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ABSTRACT 
 

 This dissertation focuses on two different areas of analysis: liquid chromatography 

(LC) enantiomeric separations and the detection of anions using electrospray ionization mass 

spectrometry (ESI-MS) and LC-ESI-MS.   

Enantiomeric separations of two distinct classes of chiral compounds were 

investigated. The first class is pterocarpans, which are isoflavanoids with cis-fused 

benzopyran benzofuranyl structures. In the reverse phase mode of operation, all pterocarpan 

enantiomers could be separated using cyclodextrin based chiral stationary phases (CSPs) 

with hydroxypropyl-β-cyclodextrin, acetyl-β-cyclodextrin, and γ-cyclodextrin showing the 

broadest enantioselectivity. Two macrocyclic glycopeptide CSPs, ristocetin A and 

vancomycin also proved useful in the reverse phase mode. Not as many separations were 

achieved in the normal phase mode for either set of CSPs. 

Chiral extended metal atom chains (EMACs) were first synthesized by F.A. Cotton 

and co-workers as the smallest possible molecular wires. It was not possible to resolve these 

enantiomers by crystallization and derivatization was impossible. The vancomycin 

macrocyclic glycopeptide stationary phase proved to be the best approach for separating 

these unusual chiral entities. Partial or baseline separation of 5 helical EMAC racemates was 

achieved in the polar organic mode or normal phase mode chromatography. In chapter 4, 

vibrational circular dichroism (VCD) is used to assign the absolute configuration of 

Ni3(dipyridylamine)4Cl2. 

Negative mode ESI-MS of anions can be problematic due to spray stability and 

background noise issues. The use of a positively charged reagent which pairs with the anion 

allows for the detection of anions in positive mode ESI-MS. Singly charged anions can be 
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paired with dicationic reagents, while doubly charged anions can be paired with tricationic 

reagents to result in an overall +1 charged complex. In this dissertation, a variety of linear 

tricationic reagents were examined to determine which structural features are important for 

anion detection. The application of linear tricationic reagents and previously reported trigonal 

tricationic reagents were then applied to the detection of a larger variety of divalent anions 

(e.g. disulfonates, dicarboxylates) and bisphosphonates, which are a class of drug used to 

treat bone diseases. The use of MS-MS and LC-ESI-MS are also discussed. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 THESIS ORGANIZATION 
 

High performance liquid chromatography (HPLC) and electrospray ionization mass 

spectrometry (ESI-MS) are two very important methods used in analytical laboratories. This 

dissertation presents research in two areas: enantioselective HPLC separations/applications 

and the ESI-MS analysis of anions in the positive mode. This introduction presents a brief 

overview of both areas. It is followed by six chapters, each on a manuscript either published 

or submitted for publication. The final chapter presents the general conclusions from both 

research areas. 

1.2 ENANTIOMERIC SEPARATIONS 

The resolution of enantiomers is very important, especially in the pharmaceutical 

industry. Although enantiomers have identical chemical and physical properties in an achiral 

environment, they can have different pharmacological, toxicological, metabolic, and 

pharmacokinetic properties within the chiral environment of biological systems. In 1992, due 

to advances in enantiomeric LC separations, the Food and Drug Administration (FDA) issued 

guidelines for the development of sterioisomeric drugs. If a drug is to be developed as a 

racemate, the effects of each single enantiomer and the racemate must be determined [2]. 

Enantiomeric separations are also important for evaluating the products of asymmetric 

syntheses and the evaluation of the enantiomeric composition of naturally occurring 

molecules, which are of increasing interest as new drugs or new drug leads [3].  

Analytical techniques such as gas chromatography (GC), HPLC, supercritical fluid 

chromatography (SFC), and capillary electrophoresis (CE) are routinely used for 
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enantiomeric separations [4]. HPLC is used most often in industry because it is robust and 

offers good reproducibility. HPLC and SFC are the favored techniques for preparative scale 

separations.  There are over 100 chiral stationary phases (CSP) available commercially. The 

most important classes based on structure are macrocyclic, pi-pi association, and polymeric 

CSPs [5]. Macrocyclic CSPs will be discussed in the following section. 

1.3 MACROCYCLIC CHIRAL STATIONARY PHASES 

Macrocyclic CSPs include three groups of chiral selectors: chiral crown ethers, 

cyclodextrins, and macrocyclic glycopeptides. The cyclodextrin-based chiral selectors 

account for a vast majority of GC and CE enantioseparations. Cyclodextrins are also 

important HPLC CSPs, especially in reverse phase and polar organic modes. Cyclodextrins 

and macrocyclic glycopeptides stationary phases will be discussed in the sections below. 

1.3.1 Cyclodextrin based CSPs 

Native α, β, and γ cyclodextrins are macrocyclic compounds formed from 6, 7, or 8 α 

-1,4-linked D-glucose units respectively. The shape of a cyclodextrin is like a hollow, 

truncated cone (Fig. 1) [4]. This cavity size increases as the number of glucose units 

increases. The interior cavity of the cyclodextrin is hydrophobic while the exterior rims are 

hydrophilic. Inclusion complexes form in aqueous or hydro-organic solutions when nonpolar 

molecules or nonpolar moieties are attracted more strongly to the hydrophobic interior of the 

cyclodextrin than to the mobile phase [6,7].  

The first successful cyclodextrin based CSP involved binding cyclodextrin to silica 

gel via an ether linkage and was introduced by Armstrong [7]. This CSP was the first that 

could be used in reverse phase mode and separated many compounds. Later studies led to a 

more thorough understanding of separation mechanisms [6,8]. A minimum of three points of 
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interaction are required for chiral recognition, with cyclodextrins and any other CSP. In the 

reverse phase mode, an inclusion complex must be formed between the analyte and the 

cavity. Also, the chiral center of the molecule should be positioned near the exterior rim of 

the cyclodextrin so that interactions between the analyte and the mouth of the cyclodextrin 

are possible. These interactions include hydrogen bonding, dipolar, and steric interactions. 

For chiral discrimination, at least one of these interactions needs to be different for each 

enantiomer. 

Derivatized cyclodextrin based CSPs offer additional sites for interactions leading to 

chiral recognition.  The hydroxypropyl-β-cyclodextrin (Cyclobond  I 2000 RSP) has been 

shown to separate compounds not separated on the native β-cyclodextrin CSP [9]. 

Cyclodextrins derivatized with aromatic groups are effective for separations in the normal 

phase mode [10,11]. Nonpolar solvent molecules occupy the cyclodextrin cavity in the 

normal phase mode, therefore π-π interactions, dipole stacking, and hydrogen bonding 

interactions are important for chiral recognition [10]. Polar organic mode chromatography, 

where the mobile phase consists of mainly acetonitrile can also be used with cyclodextrin 

CSPs. In this mode, the solvent occupies the cyclodextrin cavity and the analyte resides on 

top of the chiral selector, so that hydrogen bonding is maximized [12]. 

1.3.2 Macrocyclic Glycopeptides 

Macrocyclic glycopeptide based CSPs have also been shown to separate a wide 

variety of chiral compounds [13]. The commercially available CSPs are those based on the 

macrocyclic glycopeptide antibiotics vancomycin, ristocetin A, teicoplanin, and teicoplanin 

aglycone. All of these chiral selectors have similar peptide backbones, multiple stereogenic 

centers, and functionalities such as carboxylic acids, amines, sugar moieties, and aromatic 
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rings [14]. The teicoplanin aglycone is the only chiral selector without saccharide groups 

attached. Along with a variety of functional groups, these chiral selectors have a secondary 

structure in the form of a twisted “C” shaped basket that is relatively non-polar [15,16]. 

Interactions between an analyte molecule and the functional groups or hydrophobic cavity of 

the macrocyclic glycopeptide based CSP can lead to enantioselectivity.  

The macrocyclic glycopeptide CSPs can be used in all mobile phase modes: reverse 

phase, normal phase, and polar organic [17]. In the reverse phase mode, electrostatic 

interactions and hydrophobic interactions are thought to be the most important for chiral 

recognition [13]. In the normal phase mode, the polar functional groups and aromatic rings of 

the CSP provide the interactions needed for both retention and chiral recognition. The 

dominant analyte-CSP interactions include hydrogen bonding, pi-pi interactions, dipole 

stacking, steric repulsion and sometimes electrostatic interactions. In the polar organic mode, 

the dominant interactions between the analyte and CSP are hydrogen bonding, electrostatic, 

dipolar, and steric interactions [18]. Due to the dominance of different types of interactions in 

these three chromatographic modes, chiral recognition can vary dramatically. Hence, very 

different types of chiral molecules can be separated in one mode vs. another. Method 

development with macrocyclic glycopeptides is often simplified by the fact that the 

stationary phases are complementary. If a partial separation is obtained on one stationary 

phase, it is likely the analyte can be baseline separated on a related glycopeptide CSP 

[17,19]. Chapters 2 and 3 focus on the use of macrocyclic glycopeptide and cyclodextrin 

based CSPs for the separation of natural product analogs and chiral metal complexes. 
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1.4 VIBRATIONAL CIRCULAR DICHROISM 
 

 Just as the separation of chiral molecules is necessary in many fields, structural 

characterization of enantiomers is also important. Absolute configuration and conformations 

of a chiral molecule are important factors in determining pharmaceutical activity [3]. Circular 

dichroism and optical rotation are two well known and highly used methods for absolute 

configuration determination [20,21], but they rely on the comparison of the measured 

rotation sign to related compounds of known absolute configuration. Incorrect assignments 

can be made, even with the number of useful correlations, rules, or procedures available [22]. 

X-ray crystallography can be used for the determination of absolute configuration. This 

method requires a single crystal of sufficient size and quality, which can be difficult to 

obtain. Vibrational circular dichroism (VCD) circumvents these problems by correlating an 

optical activity measurement to accurate quantum mechanical calculations, which leads to the 

direct determination of the absolute configuration of a molecule. For traditional CD, 

electronic transitions are probed in the visible spectral region. The same principles are 

applied in VCD, but in the mid-IR region with fundamental vibrational frequencies being 

probed [23].   

VCD was discovered in the 1970s [24,25] and instrumentation has been commercially 

available since 1997 [22]. For assignation of absolute configuration by VCD, experimental 

VCD and IR spectra are measured using an instrumental configuration as shown in Figure 2. 

Next, the vibrational absorption and CD spectra must be predicted using quantum mechanical 

programs. A widely used theoretical level is the density functional method with the B3LYP 

functional and 6-31G* basis set [25]. For a molecule with a single conformation, the starting 

geometry can be obtained in a straight-forward manner through a molecule-building 
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program. Either of the two possible absolute configurations is arbitrarily chosen as a starting 

point and the geometry is further optimized to obtain the minimum energy geometry. 

Vibrational absorption and CD intensities for all vibrational bands are then calculated 

for the chosen absolute configuration. A spectrum can be predicted based on the calculated 

band positions and intensities. If the predicted VCD band signs match the experimentally 

observed VCD band signs, then the absolute configuration of the experimentally investigated 

molecule is assigned the configuration of the enantiomer used in the calculations [25]. If the 

predicted signs and experimental signs are opposite, then the opposite absolute configuration 

is assigned. Figure 3 shows the comparison of the experimental VCD spectrum and the 

predicted spectrum for both enantiomers of (+)-3-chloro-1-butyne. It is clear that the VCD 

signs of the experimental spectrum match that of the (R)-enantiomer, hence (+)-3-chloro-

butyne is (R)-3-chloro-butyne. The VCD spectrum of molecules that can exist as multiple-

conformers is more complicated as the relative populations of conformers must be taken into 

account for the calculations. A population-weighted VCD spectrum is generated from 

individual conformer calculations and compared to the experimentally observed VCD 

spectrum to assign absolute configuration, as for single-conformer molecules [25]. Chapter 4 

is a report of the use of VCD to assign the absolute configuration to the enantiomers of one 

of the metal complexes (Ni3(dipyridylamine)4Cl2) separated in Chapter 3. 

1.5 ANALYSIS OF ANIONS USING MASS SPECTROMETRY 

 Anion analysis is important in many areas of study, especially involving 

environmental samples, biological tissues and fluids, and foods and beverages. Separation 

techniques are often employed with such complex matrices to separate ions of interest from 

potential interferences in the matrix. Ion chromatography and capillary electrophoresis are 
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the most common separation methods used for ion analysis. Reverse phase mode 

chromatography can be used if the anion is sufficiently hydrophobic. Ion selective electrodes 

have also been used for anion detection. Most anions have little UV absorbance and unless 

derivatized, direct detection with a UV detector can be difficult. 

Conductivity detection is used frequently for ion chromatography detection because it 

is a universal detector [26]. Analytes are detected when a difference in conductance between 

the ion and the background electrolyte is measured. Direct detection occurs when the 

conductance of the analyte is larger than that of the background, while when analyte 

conductance less than that of the background indirect detection must be used. Lower 

concentrations and conductivity of the background electrolyte lead to lower baseline noise, 

which improves detection sensitivity. Because of this, most conductivity detection is 

performed using background suppression. In this method the background electrolytes such as 

sodium hydroxide or sodium carbonate are converted to species of low conductance, like 

water or H2CO3, by cation exchange of the counterion for hydrogen ion. Suppression 

technology has been thoroughly reviewed [27,28]. Conductivity detection is a universal and 

useful method for anion detection, but it does not offer any structural information and lower 

limits of detection are required for some analyses.  

 Ion-selective electrodes have also been used for ion chromatography detection [29-

31]. These electrodes detect selected analytes, even in complex matrices, however the use of 

ion-selective electrodes with ion chromatography is not very common. Because of the high 

selectivity of the ion-selective electrode, the information obtained in conjunction with a 

separation technique might be the same as that obtained by flow injection analysis [26]. In 

recent years, improvements in sensitivity and limits of detection have been made with ion-



www.manaraa.com

 

 

8 

selective electrodes [32], however they are most often used without a separation technique 

and in non-sample limited applications. 

 The use of mass spectrometry as a detection method for anion analysis is growing in 

popularity. The mass spectrometer can discriminate between anionic species and/or provide 

structural information about the analytes, providing a second dimension of analysis. 

Inductively coupled plasma (ICP) and atmospheric pressure ionization methods (API), most 

often ESI, are methods of major importance for detection in ion chromatography. ICP 

interfaces are compatible with traditional ion chromatography flow rates (1 mL/min) and can 

detect several elements with great sensitivity [33,34]. ICP-MS is a very popular method for 

detecting metallic and halogenated species [35-45]. While ICP is useful for elemental 

analysis, the high temperature used leads to the complete destruction of the analyte, ruling 

out any other structural information. Identification of unknown analytes is difficult using 

ICP, however API techniques, ESI and atmospheric pressure chemical ionization (APCI) can 

be used to elucidate structural and identity information of analytes from the resulting mass 

spectrum.  

 ESI is a useful ionization technique for many classes of analytes. Briefly, in 

electrospray ionization, liquid flow (effluent) is pumped through a capillary which has an 

applied voltage (+2-6 kV). This current flow creates charge separation at the surface of the 

liquid, thereby producing a “Taylor cone” protruding from the capillary tip. Droplets that 

contain an excess of charge (positive or negative depending on the polarity of the capillary 

voltage) will then detach from the end of the Taylor cone (Fig. 4). These droplets eventually 

yield “naked” ions for analysis by mass spectrometry via one of two generally accepted 

mechanisms [46, 47]: the charge residue model (CRM) and the ion evaporation model (IEM). 
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More detailed descriptions of the electrospray ionization process can be found elsewhere [46-

48].  

 The inherent negative charge of anions would seem to make the use of negative mode 

ESI-MS detection an obvious choice. While negative mode ESI is the most straightforward 

method for detecting anions, there are some drawbacks. The negative ion mode is more prone 

to corona discharge than the positive ion mode. Corona discharge is an electrical discharge 

resulting from the ionization of a fluid surrounding a conductor. In ESI, corona discharge 

occurs when the high concentration of electrons on the capillary lead to ionization of 

molecules around the capillary. The large quantity of ionized molecules leads to significant 

background interferences and poor spray stability [48]. If corona discharge persists, it can 

lead to arcing, which not only leads to a reduction in spray current, but can also damage the 

electrical components of the instrument [48]. Yamashita and Fenn noticed that the onset of 

arcing occurred at lower applied potentials in negative ion mode than in positive ion mode 

[49]. 

 Corona discharge can be reduced by the use of electron-scavenging gases [50,51] 

and/or halogenated solvents [52-54]. Halogenated solvents have a high relative electron 

affinity and can thus “capture” electrons, which reduces or eliminates corona discharge and 

increases spray stability. Butanol [51] and 2-propanol [48] have also been recommended for 

use as LC-MS solvents when negative mode is used. These solvents have higher proton 

affinities than traditional LC solvents like water and methanol. Electron scavenging gases, 

such as oxygen or SF6, work in a similar manner. Commercial instruments today often use 

nitrogen from liquid N2 dewars or generators which makes adding high electron affinity 

gases more difficult. Along with the difficulties of using electron scavenging gases, the 
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halogenated solvents and alcohol modifiers referred to above are not commonly used in 

reverse phase chromatography or ion chromatography. A sensitive, positive mode ESI-MS 

method to determine anions using common HPLC solvents would be very beneficial.  

Recently, a method was developed to detect singly charged anions using positive 

mode ESI-MS by pairing the anion with a dicationic reagent to create a positively charged 

complex [55-58]. The use of tricationic reagents which pair with divalent anions for the 

detection of a +1 complex also has been reported recently [59]. Using positive mode ESI-MS 

avoids the spray stability problems of negative mode ESI-MS. Beyond this, pairing the anion 

with the dicationic or tricationic reagent has other benefits. For example, monitoring of the 

anion/cation pair moves the detected species to a higher mass region where there is lower 

background noise. Also, anions of low mass may be moved well above the low mass cutoff 

of quadrupole instruments (e.g., ion traps). In addition, the pairing reagents may be used to 

differentiate between the analyte of interest and an interference of the same m/z [57]. 

 The final three chapters of this dissertation focus on the expansion of positively 

charged reagents for the detection of anions by positive mode ESI-MS. In chapter 5, a variety 

of linear tricationic reagents are evaluated with a small number of divalent anions to 

determine what types of charge groups and alkyl chain lengths make ideal linear pairing 

agents. Chapters 6 and 7 apply the superior linear trications from chapter 5 and the best rigid, 

trigonal trications from a previous study [59] to the detection of a wider range of divalent 

anions and bisphosphonate drugs. Also in these chapters, MS/MS was used to lower the 

background and therefore the limits of detection for many of the anions presented. 
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Figure 1. Structure of β-cyclodextrin (a) and the toroidal shape of a cyclodextrin molecule (b) 
(from Ref. [4]). 
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Figure 2. Block diagram of the optical-electronic layout of a Fourier transform vibrational 
circular dichrosim spectrometer (from Ref. [22]). 
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Figure 3. Comparison of (a) the experimental mid-IR VCD spectrum of (+)-3-chloro-1-
butyne with the predicted spectra for the (b) (R)-and (c) (S)-enantiomers of 3-chloro-1-butyne 
(from Ref [23]). 
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Figure 4. Schematic of the electrospray ionization process. The analyte solution is pumped 
through a needle to which a high voltage is applied. A Taylor cone with an excess of positive 
charge on its surface forms as a result of the electric field gradient between the ESI needle 
and the counter electrode. Charged droplets are formed from the tip of the Taylor cone, and 
these droplets evaporate as they move towards the entrance of the mass spectrometer to 
produce free, charged analyte molecules that can be analyzed for mass-to-charge ratio. From 
Ref. [48]. 
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CHAPTER 2 

 
 

USE OF NATIVE AND DERIVATIZED CYCLODEXTRIN BASED AND 
MACROCYCLIC GLYCOPEPTIDE BASED CHIRAL STATIONARY PHASES FOR 
THE ENANTIOSEPARATION OF PTEROCARPANS BY HIGH PERFORMANCE 

LIQUID CHROMATOGRAPHY 
 

A paper published in Journal of Liquid Chromatography and Related Technologies1

 The enantioselectivity of native and derivatized cyclodextrin stationary phases and 

macrocyclic glycopeptides for chiral pterocarpans was evaluated using high performance 

liquid chromatography (HPLC). All enantiomers could be baseline resolved in the reverse 

phase mode on cyclodextrin based, Cyclobond, chiral stationary phases (CSPs). The 

hydroxypropyl-β-cyclodextrin, acetyl-β-cyclodextrin, and gamma-cyclodextrin CSPs show 

the broadest enantioselectivity in the reverse phase mode. Some compounds were baseline 

separated on the ristocetin A and vancomycin macrocyclic glycopeptide chiral stationary 

phases in the reverse phase mode. Separations on the ristocetin A columns produced the 

highest resolutions (up to ~7.1) in this study. The 3,5-dimethylphenyl carbamate derivatized 

cyclodextrin column showed the broadest enantioselectivity in normal phase LC. Of the 

macrocyclic glycopeptide CSPs, ristocetin A and teicoplanin aglycone (Chirobiotic R and 

 

M.M. Warnke, C.R. Mitchell, R.V. Rozhkov, D.E. Emrich,  
R.C. Larock, and D.W. Armstrong 

 

ABSTRACT 

                                                 
1 Reproduced from Journal of Liquid Chromatography and Related Technologies, 2005, 28(6), 823-834. 
Copyright © 2005 with permission from Taylor and Francis. 



www.manaraa.com

 

 

20 

TAG respectively) separated the most compounds in the normal phase mode. However, 

baseline separations were only achieved with the teicoplanin and teicoplanin aglycone. 

 

2.1 INTRODUCTION 

 Pterocarpans are cis–fused benzopyran benzofuranyl structures and one of the largest 

groups of natural isoflavanoids, second only in prevalence to the isoflavones [1]. 

Isoflavanoids have been isolated mainly from fodder crops, beans, peas, and some shrubs.  

Many pterocarpans are phytoalexins, or antifungal compounds formed in a plant after it has 

been infected by fungal organisms [2,3]. Other pterocarpans have shown anti-microbial 

activity [4] and activity against snake and spider venom [5]. The structure and numbering 

system for pterocarpans is shown in Figure 2.1. 

 Although there are two stereogenic centers at carbons 6a and 11a, pterocarpans exist 

as only one set of enantiomers because of the cis-fused ring system. In most cases, the (-)-

(6aR, 11aR)-isomer is the biologically produced pterocarpan enantiomer [3,4,5]. Synthetic 

pterocarpans are often produced as racemates [6,7,8]. Thus, enantioseparation is important in 

isolating the active enantiomer. Previously, enantiomeric separations have been achieved for 

both natural and synthetic pterocarpan compounds using both HPLC and capillary 

electrophoresis [9,10].  

 Native α, β, and γ cyclodextrins are macrocyclic compounds formed from 6, 7, or 8 

gluco-pyranose units respectively. Chiral stationary phases (CSP) based on cyclodextrins are 

able to separate enantiomers by forming inclusion complexes in the reverse phase mode of 

operation [11,12]. The hydrophobic part of the analyte molecule complexes with the 

hydrophobic interior cavity of the cyclodextrin. Interactions with the hydroxyl groups or 
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derivative groups on the rim complete the necessary three points of interaction required to 

achieve enantioselective complexation [11]. The cavity size increases as the number of 

gluco-pyranose units increases. The native β-cyclodextrin CSP (Cyclobond I 2000) was 

shown to effectively separate enantiomers of polycyclic aromatic hydrocarbons [13,14].   

Derivatized cyclodextrin based CSPs offer additional sites for interactions leading to 

chiral recognition.  The hydroxypropyl-β-cyclodextrin (Cyclobond  I 2000 RSP) has been 

shown to separate compounds not separated on the native β-cyclodextrin CSP [15]. 

Cyclodextrins derivatized with aromatic groups are effective for separations in the normal 

phase mode [16,17]. Nonpolar solvent molecules occupy the cyclodextrin cavity in the 

normal phase mode, therefore π-π interactions, dipole stacking, and hydrogen bonding 

interactions are important for chiral recognition [16]. 

 Macrocyclic glycopeptide based CSPs have also been shown to separate a wide 

variety of chiral compounds [18]. The commercially available CSPs are those based on the 

macrocyclic glycopeptide antibiotics vancomycin, ristocetin A, teicoplanin, and teicoplanin 

aglycone. All of these chiral selectors have a similar peptide backbone, multiple stereogenic 

centers, and functionalities such as carboxylic acids, amines, sugar moieties, and aromatic 

rings [19]. The teicoplanin aglycone is the only chiral selector without saccharide groups 

attached. Along with a variety of functional groups, these chiral selectors have a secondary 

structure in the form of a twisted “C” shaped basket that is relatively non-polar [20,21]. 

Interactions between an analyte molecule and the functional groups or hydrophobic cavity of 

the macrocyclic glycopeptide based CSP can lead to enantioselectivity.  
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2.2 EXPERIMENTAL 

2.2.1 Materials 

 The pterocarpan compounds studied are shown in Table 1. The compounds were 

synthesized by reacting 1 equivalent of a substituted 2-iodophenol and 2 equivalents of 

benzopyran or a substituted benzopyran with 5%  palladium acetate catalyst, 1 equivalent of 

Na2CO3, and 15% n-Bu4NCl in DMF at 100º C for 1 day [22]. 

 The methanol (MeOH), acetonitrile (ACN), and heptane used in the mobile phases 

are all HPLC grade and were purchased from Fisher Scientific (Fair Lawn, New Jersey). The 

ethyl alcohol (EtOH) was purchased from Aaper Alcohols (Shelbyville, Kentucky) and is of 

punctilious grade.  Water used in the separations was filtered and deionized using activated 

charcoal and a 5 µm filter. Mobile phases were degassed through ultrasonication and vacuum 

for 5 minutes. 

2.2.2 Equipment 

 The cyclodextrin based chiral stationary phases used were Cyclobond I 2000, 

Cyclobond I 2000 DM (consisting of dimethylated β-cyclodextrin), Cyclobond I 2000 RSP 

(consisting of hydroxypropyl derivatized β-cyclodextrin), Cyclobond I 2000 AC (consisting 

of acetylated β-cyclodextrin), Cyclobond I 2000 DMP (consisting of 3,5-

dimethylphenylcarbamate derivatized β-cyclodextrin), Cyclobond I 2000 RN (consisting of 

naphthylethyl carbamate derivatized β-cyclodextrin), Cyclobond II (γ-cyclodextrin), and 

Cyclobond III (α-cyclodextrin). The macrocyclic glycopeptide based chiral stationary phases 

used in this study were the Chirobiotic R (based on ristocetin A),  Chirobiotic V (based on 

vancomycin), Chirobiotic T (based on teicoplanin), and Chirobiotic TAG (based on 



www.manaraa.com

 

 

23 

teicoplanin aglycone). All stationary phases were obtained from Astec (Whippany, New 

Jersey, USA). 

The chromatographic experiments were performed on an HP1050 HPLC, equipped 

with an autosampler, quaternary pump, and VWD UV detector. All experiments were 

performed at ambient temperature and a flow rate of 1.0 ml/min. 

2.2.3 Calculations 

 The retention factor for the first enantiomeric peak, k1, was calculated by the 

equation: tr1-tm/tm, where tr1 is the retention time of the first peak and tm is the retention time 

of the void volume. The selectivity, α, is determined as follows: k2/k1, where k2 is the 

retention factor of the second enantiomeric peak. The resolution is calculated as follows 2(tr2-

tr1)/(w1+w2), where w1 and w2 are the widths at the peak’s base. 

 

2.3 RESULTS AND DISCUSSION 

 The β-cyclodextrin and γ-cyclodextrin CSPs were the most useful native cyclodextrin 

CSPs, separating all five compounds. The difference between the two cyclodextrins is one 

gluco-pyranose unit, which creates a larger cavity for the gamma cyclodextrin. Figure 2.2 

shows separations on both the beta and gamma cyclodextrin CSPs. On the former column, 

there is a definite substituent effect on enantioselectivity. The unsubstituted pterocarpan 

(compound 1) has very low enantioselectivity, while the substituted pterocarpans 

(compounds 5 and 3) have much higher enantioselectivities and resolutions. The substituent 

can be on the benzofuran or benzopyran portion of the molecule, and either improves 

enantioseparation on the β-cyclodextrin column. Enantiomers of the unsubstituted 

pterocarpan (compound 1) are almost completely resolved on the γ-cyclodextrin CSP, which 
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is a vast improvement from the results on the β-cyclodextrin CSP. This can only be due to 

the difference in how well the analyte fits into the cyclodextrin cavity versus the larger γ-

cyclodextrin cavity. However, it should be noted that the γ-cyclodextrin CSP was ineffective 

in separating pterocarpans with substituted benzopyran groups.  

The nonaromatic derivatized cyclodextrin based CSPs produced the best separations 

of all the cyclodextrin based CSPs. All five pterocarpan compounds were baseline or near 

baseline separated on the Cyclobond I 2000 AC CSP. The Cyclobond I 2000 RSP CSP and 

Cyclobond I 2000 DM CSP each separated four of the five compounds. However, 

separations on the Cyclobond I 2000 RSP CSP had higher resolutions than those on the 

Cyclobond I 2000 DMP CSP (see Table 2.1).   

Compound 1 had the highest resolution and enantioselectivity of all of the compounds 

on the Cyclobond I 2000 AC CSP.  The enantioselectivity, resolution, and retention factors 

are similar for compounds 2, 3 and 4, which are pterocarpans with substituents on the 

benzene ring of the benzofuran moiety. Because of these similarities, it appears that the type 

of substituent plays only a minor role in the enantiomeric separation on the acetylated β-

cyclodextrin CSP. Compound 5, with a methyl ether substituent on the aromatic ring of the 

benzopyran moiety, has a lower enantioselectivity and resolution and a higher retention 

factor than the other pterocarpans.   

The Cyclobond I 2000 DM CSP showed similar trends to the AC CSP. On the DM 

CSP, pterocarpans without a substituent or with a substituent on the benzofuran moiety 

(compounds 1, 2, and 4) had similar resolutions and enantioselectivities. The benzopyran 

substituted compound 5 had lower resolution and enantioselectivity.  
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Conversely, compound 5 had higher enantioselectivity and resolution on the 

Cyclobond I 2000 RSP CSP (Fig 2.3A) than on the Cyclobond I 2000 DM CSP (Fig. 2.3B).  

On the other derivatized cyclodextrin CSPs, compounds 1-4 showed similar separations and 

were always better than those for compound 5. The enantioseparation of compound 5 was the 

best on the RSP CSP (highest α and Rs). The nature of the benzofuran substituent appears to 

affect the enantioseparation on the RSP CSP. Compound 2 with a methyl ketone substituent 

has a smaller resolution and enantioselectivity than compound 3 with its methyl ether 

substituent. The two enantiomers of the nitro-substituted pterocarpan, compound 4, were not 

separated. 

 The aromatic derivatized cyclodextrin CSPs, the Cyclobond I 2000 DMP and 

Cyclobond I 2000 RN, were not highly effective in the reverse phase mode, with no baseline 

separations despite long retention times. However, the normal phase mode was much more 

successful. The Cyclobond I 2000 DMP had higher resolutions and selectivities and lower 

retention factors. A comparison of the performance of the Cyclobond I 2000 DMP column in 

the reverse phase mode and the normal phase mode is shown in Figure 2.4.  In the reverse 

phase mode, compound 2 shows a slight shoulder. In the normal phase mode, a much better 

separation of the two enantiomers is achieved.  

 The macrocyclic glycopeptide CSPs are also effective for the enantioseparation of 

these pterocarpans.  From the data in Table 2.1, it is clear that only the pterocarpans with 

substituents on the benzofuran side can be separated on the Chirobiotic columns in either the 

reverse phase or normal phase mode. The location of the substituent on the pterocarpan along 

with interactions between the substituent and chiral selector appear to be necessary for chiral 

recognition with the glycopeptide chiral selectors. 
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 The principle of complementary separations for the macrocyclic glycopeptide based 

CSPs states that if a compound partially separates on one of the Chirobiotic columns, it is 

likely it will baseline separate on one of the other columns using the same or similar mobile 

phase conditions [18]. Figure 2.5 illustrates this concept. Compound 2 separated with an α 

value of 1.10 and baseline resolution on the Chirobiotic V CSP. The separation on the 

Chirobiotic R CSP has an α value of 1.29 and over twice the resolution of the Chirobiotic V 

CSP. The difference in performance of the Chirobiotic V and R CSPs is much more dramatic 

for the separation of compound 3. In this case a non baseline resolved set of peaks with a 

selectivity of 1.06 on the Chirobiotic V column, improves to a selectivity of 1.65 and a 

resolution of 7.07 on the Chirobiotic R column. 

 In the normal phase mode separations with the macrocyclic glycopeptide columns, 

the Chirobiotic TAG and R columns separated the most enantiomers. Again, only the 

pterocarpans with benzofuranyl substituents separated. Compound 4 was baseline separated 

on the Chirobiotic R, T, and TAG columns in the normal phase mode. The electron- 

withdrawing nitro substituent makes the aromatic systems of the pterocarpan somewhat π 

electron deficient, so there can be stronger π-π interactions with the aromatic systems in the 

stationary phase.  

 

2.4 CONCLUSIONS 

 The native cyclodextrin CSPs were effective in the enantioseparation of all five 

pterocarpan compounds in the reverse phase mode. The Cyclobond I 2000 RSP and 

Cyclobond I 2000 AC columns were the most effective of this class of CSPs. In the reverse 

phase mode, baseline separations were achieved for all compounds using these two CSPs. 
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The Chirobiotic R CSP separated the most compounds in the reverse phase mode and had the 

best resolution and enantioselectivities found in this study. In the normal phase mode, the 

Cyclobond I 2000 DMP was the only cyclodextrin based CSP to show enantioselectivity. 

Also in normal phase mode, some of the pterocarpans were partially separated on the 

Chirobiotic R and Chirobiotic V CSPs, and baseline separations were achieved for one 

compound on the Chirobiotic T and Chirobiotic TAG CSPs. 
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Table 2.1 Retention factor (k1’), enantioselectivity (α) and enantioresolution (Rs) of 
pterocarpans on columns listed. 
 

1 2 3 4 5

Cyclodextrin Based 
Chiral Stationary Phases k1 ∴ Rs k1 ∴ Rs k1 ∴ Rs k1 ∴ Rs k1 ∴ Rs

Reverse Phase Mode

Cyclobond I 2000 (a) 7.12 1.01 0.32 7.78 -- -- 10.01 1.11 1.96 8.40 -- -- 8.52 1.06 1.21
Cyclobond II(b) 3.23 1.08 1.33 3.43 1.08 1.39 4.26 1.13 1.03 2.68 1.06 0.86 3.98 -- --

Cyclobond III (c) 3.48 -- -- 4.25 -- -- 7.96 -- -- 5.99 -- -- 5.84 -- --
Cyclobond I 2000 RSP(d) 4.33 1.12 1.93 3.29 1.07 1.17 4.56 1.11 1.75 3.30 -- -- 5.73 1.13 2.09
Cyclobond I 2000 AC(e) 8.01 1.22 2.78 8.23 1.15 1.69 10.00 1.18 2.27 8.33 1.17 2.00 11.90 1.11 1.44
Cyclobond I 2000 DM(f) 6.92 1.09 0.73 6.15 1.06 0.76 8.82 -- -- 5.99 1.08 0.89 7.55 1.03 0.56
Cyclobond I 2000 DMP(d) 7.76 -- -- 11.98 1.05 0.68 14.02 -- -- 9.88 -- -- 15.39 1.04 0.60
Cyclobond I 2000 RN (g ) 15.31 -- -- 14.00 1.03 0.63 20.40 1.05 1.11 8.96 -- -- 17.40 1.06 1.33

Normal Phase Mode

Cyclobond I 2000 DMP (h) 0.22 -- -- 2.85 1.10 1.40 1.09 1.06 1.21 3.17 1.12 2.03 0.58 -- --
Cyclobond I 2000 RN (h) 0.15 -- -- 2.31 -- -- 0.90 -- -- 2.13 -- -- 0.37 -- --

Macrocyclic Glycopeptide
Based Chiral 

Stationary Phases k1' ∴ Rs k 1' ∴ Rs k1' ∴ Rs k1' ∴ Rs k1' ∴ Rs

Reverse Phase Mode

Chirobiotic R(e) 1.82 -- -- 2.52 1.29 4.19 3.52 1.65 7.07 4.36 1.25 3.75 2.47 -- --
Chirobiot ic V (g) 4.04 -- -- 6.10 1.10 1.71 12.20 1.06 1.12 6.61 -- -- 5.69 -- --

Chirobiotic TAG(i) 20.12 -- -- 23.80 -- -- 30.00 -- -- 10.72 -- -- 22.62 -- --
Chirobiotic T(g) 9.06 -- -- 17.89 1.03 0.54 19.25 -- -- 10.13 -- -- 12.20 -- --

Normal Phase Mode

Chirobiotic R(j) 0.28 -- -- 2.35 1.02 0.65 0.85 1.04 0.90 2.19 1.08 1.38 0.30 -- --
Chirobiot ic V(j) 0.21 -- -- 2.46 1.05 1.26 0.85 -- -- 1.89 -- -- 0.27 -- --

Chirobiotic TAG(h) 0.29 -- -- 6.00 1.07 0.98 2.19 1.02 0.44 4.65 1.36 3.24 0.51 -- --
Chiro biotic T(j) 0.15 -- -- 2.14 -- -- 0.66 -- -- 1.79 1.20 3.39 0.48 -- --

Mobile Phase Conditions
(a) 80/20 water/acetonitrile (e) 60/40 water/methanol
(b) 90/10 water/acetonitri le (f) 80/20 water/acetonitrile (i) 75/25 water/acetonitrile
(c) 80/20 water/methanol (g) 70/30 water/methanol (j) 90/10 heptane/ethanol
(d) 60/40 methanol/water (h) 95/5 heptane/ethanol
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Figure 2.1. Numbering system of an unsubstituted pterocarpan. The stereocenters are denoted 
with asterisks. 
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Figure 2.2. Comparison of separations on beta and gamma cyclodextrin based CSPs. A1, A2, 
and A3 are the enantioseparations of compounds 1, 5, and 3 respectively on the beta 
cyclodextrin. A1-A3 mobile phase conditions are 20/80 ACN/ H2O.  B1, B2, and B3 are the 
enantioseparations of compounds 1, 2, and 4 respectively on the gamma cyclodextrin. B1-B3 
mobile phase conditions are 10/90 ACN/H20. 
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Figure 2.3. Enantioseparation of methyl ether substituted pterocarpan (compound 5). A) 
Separation on Cyclobond I 2000 RSP using 40/60 MeOH/H20. B) Separation on Cyclobond 
I 2000 DM using 20/80 ACN/ H20. 
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Figure 2.4. Comparison of separations in normal and reverse phase modes. Compound 2 was 
separated on the Cyclobond I 2000 DMP column using the following mobile phase 
conditions: A) 40/60 MeOH/H20 and B) 95/5 Heptane/EtOH. 
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Figure 2.5. Enantioseparations on macrocyclic glycopeptide CSP. The methyl ketone 
substituted pterocarpan (compound 2) was separated on A) Chirobiotic V at 30/70 
MeOH/H2O and B) Chirobiotic R at 40/60 MeOH/ H2O. The methyl ester substituted 
pterocarpan (compound 3) was separated on C) Chirobiotic V at 30/70 MeOH/ H2O and D) 
Chirobiotic R at 40/60 MeOH/ H2O. 
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CHAPTER 3 

ENANTIOSEPARATION OF EXTENDED METAL ATOM CHAIN COMPLEXES: 
UNIQUE COMPOUNDS OF EXTRAORDINARILY HIGH SPECIFIC ROTATION 

 
 

A paper published in Chirality2

 Some extended metal atom chains (EMACs), consisting of at least three metal atoms 

wrapped by various ligands, have shown promise as molecular wires [1-4].  The simplest 

examples of EMACs are a class of trimetal dipyridylamido complexes of the form 

 
 

Molly M. Warnke, F. Albert Cotton, Daniel W. Armstrong 
 
 

 
ABSTRACT 

 
Extended metal atom chains (EMACs) contain a linear metal chain wrapped by various 

ligands. Most complexes are of the form M3(dpa)4X2, where M=metal, dpa=2,2’-

dipyridylamide, and X=various anions. The ligands form helical coils about the metal chain, 

which results in chiral EMAC complexes. The EMACs containing the metals Co and Cu 

were partially separated in polar organic mode using a vancomycin based chiral stationary 

phase. Under similar conditions, two EMACs with Ni metal and varying anions could be 

baseline separated. The polar organic mode was used because of the instability of the 

compounds in aqueous mobile phases. Also, these conditions are more conducive to 

preparative separations. Polarimetric measurements on the resolved enantiomers of 

Ni3(dpa)4Cl2 indicate that they have extraordinarily high specific rotations (on the order of  

5000 deg·cc/g·dm). 

3.1 INTRODUCTION 

                                                 
2 Reproduced from Chirality, 2007, 19, 179-183. Copyright © 2007 with permission from Elsevier. 
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M3(dpa)4X2, where M=metal, dpa=2,2’-dipyridylamide, and X=various anions. These 

complexes have interesting magnetic and electrochemical properties, but also contain an axis 

of chirality. 

 The general structure of the M3(dpa)4X2 complexes and the structural abbreviation for 

the dpa ligand are shown in Figure 3.1a and 3.1b respectively. The axis of chirality runs 

along the trimetal chain. Chirality arises because steric hindrance of the pyridyl rings forces 

the dpa ligand from a planar configuration into a helical configuration [5]. Helical 

enantiomers are designated P for plus if following the helix describes a clockwise direction 

and M for minus if the direction is counterclockwise [6].   

 Thus far there have been no reports of successful asymmetric syntheses of EMAC 

enantiomers. There have been no reports of enantiomeric separations of these compounds via 

crystallization, chromatography, or capillary electrophoresis. Furthermore, EMACs are not 

good biological substrates and thus do not lend themselves to biological/enzymatic 

resolutions/enrichments. Previously, amylose and cellulose based chiral stationary phases 

(CSPs) have been used to separate racemic complexes containing one or two metals atoms or 

four atoms in a tetrahedrane-type cluster by high performance liquid chromatography 

(HPLC) [7-9]. Cyclodextrin CSPs have been used to separate metallocene enantiomers 

[10,11]. Teicoplanin, one of the macrocyclic glycopeptide CSPs, successfully separated 

ruthenium complexes containing one or two Ru atoms [12].  

 Macrocyclic glycopeptides have separated many classes of chiral compounds [13]. 

The available CSPs are based on the antibiotics vancomycin, ristocetin-A, teicoplanin, and 

teicoplanin-aglycone [13-15]. All of these chiral selectors are similar in that they have a 

peptide backbone and multiple functional groups such as carboxylic acids, amines, and 



www.manaraa.com

 

 

39 

aromatic moieties [15]. Another feature of the macrocyclic glycopeptides is a twisted “C-

shaped” basket that is relatively non-polar [16,17]. Enantioselectivity arises from interactions 

with the analyte and functional groups or the hydrophobic basket. Macrocyclic glycopeptide 

CSPs can be operated under reverse phase, normal phase, and polar organic modes [13]. This 

study reports the first enantiomeric separation of Ni, Co, Cu, and Cr EMACs with various 

ligands and counterions. 

 

3.2 MATERIALS AND METHODS 

 The formulas of the EMACs used in this study are shown in Table 1. The basic 

mechanism for forming the M3(dpa)4Cl2 is: 3MCl2+4Lidpa  M3(dpa)4Cl2 + 4LiCl [5, 18-

20]. The synthesis for the other compounds in this study can be found in reference 3. 

Mobile phases and sample solutions were prepared using HPLC grade methanol 

(MeOH), acetonitrile (ACN), tetrahydrofuran (THF) and heptane along with reagent grade 1-

propanol purchased from Fisher Scientific (Fair Lawn, New Jersey). Additionally, HPLC 

grade methylene chloride was purchased from VWR (West Chester, PA). Ammonium 

trifluoroacetate (NH4TFA) and sodium sulfate were purchased from Aldrich (Deerfield, IL). 

The ammonium nitrate (NH4NO3) was purchased from Fisher Scientific. Water used in the 

extraction steps was filtered and deionized using a Millipore water system. Mobile phases 

were degassed with helium for 5 minutes. 

The macrocyclic glycopeptide based chiral stationary phases used in this study was 

the Chirobiotic V (based on vancomycin) and the Chirobiotic T (based on teicoplanin). The 

stationary phase was obtained from Astec (Whippany, New Jersey, USA). 
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The chromatographic experiments were performed on an HP1050 HPLC, equipped 

with an autosampler, quaternary pump, and VWD UV detector. All experiments were 

performed at ambient temperature, with flow rates as designated in figure captions, and with 

UV detection at 270 nm. Samples were dissolved in either acetonitrile for polar-organic 

mode separations or tetrahydrofuran for normal phase mode separations. 

 Chiral detection was performed with a Jasco CD-2095 (Easton, Maryland) circular 

dichroism detector. The chiral detector was in line with an HPLC system consisting of a 

pump (LC-6A, Shimadzu, Kyoto, Japan), a system controller (SCL-6A), Chromatopac (CR 

601, Shimadzu), UV detector (SPD-6A, Shimadzu) and a 200-µl injector valve (Rheodyne, 

Cotati, CA, USA). The wavelength of detection was 270 nm. 

For the preparative separation and polarimetry experiments, a semi-preparative 

(250x21.2 mm) Chirobiotic V macrocyclic glycopeptide based chiral stationary phase was 

used. The stationary phase was obtained from Astec (Whippany, New Jersey, USA). The 

mobile phase consisted of 95/5/0.25 ACN/MeOH/ NH4TFA. The trinickel dipyridylamido 

complex was dissolved in 60/40 ACN/MeOH before injecting 200 μl. 

An HPLC system consisting of a pump (LC-6A, Shimadzu, Kyoto, Japan), a system 

controller (SCL-6A), Chromatopac (CR 601, Shimadzu), UV detector (SPD-6A, Shimadzu) 

and a 200-µl injector valve (Rheodyne, Cotati, CA, USA) was used. Peaks were collected at 

270 nm. 

After collection, the enantiomers were evaporated to dryness, then dissolved with 

dichloromethane. Each enantiomer was washed with deionized water to remove the salt from 

the mobile phase. Sodium sulfate was added to the enantiomer/dichloromethane solution and 

it was then allowed to sit for several hours to remove any excess water. The sodium sulfate 
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was removed and the dichloromethane was evaporated. Each enantiomer was prepared in 

methylene chloride to the concentration shown in Table 2, then analyzed at ambient 

temperature using a Jasco P-1010 polarimeter at a wavelength of 589 nm. The cell pathlength 

is 1 dm. 

 The retention factor for the first eluted enantiomer, k1, was calculated using the 

equation: tr1-trm/ trm, where tr1 is the retention time of the first enantiomer peak and trm is the 

retention time of the void volume. The selectivity factor, α, was calculated as follows: k2/ k1, 

where k2 is the retention factor for the second eluted enantiomer. Resolution is calculated as: 

2(tr2- tr1)/( w1+ w2) where w1 and w2 are the widths at the peak’s base. 

 Specific rotation, [α]589
22, is calculated using the equation: α/lc, where α is the 

observed optical rotation, l is the pathlength of the cell in dm, and c is the concentration of 

analyte in g/cc. Note that this use of α should not be confused with that previously defined 

for chromatographic selectivity. 

3.3 RESULTS AND DISCUSSION 

 The Chirobiotic T and Chirobiotic V were the only macrocyclic glycopeptide 

stationary phases to show enantioselectivity for the trimetal dipyridylamido complexes. 

Separations on the vancomycin-based stationary phase had higher efficiencies and better 

resolutions than on the teicoplanin CSP at similar mobile phase conditions. Consequently, 

this study focuses on separations obtained on the Chirobiotic V stationary phase. Separations 

were peformed in either the polar-organic mode or normal-phase mode because the dpa anion 

is a very strong base and the complexes decomposed under aqueous conditions. Also, the 

organic solvents used in the polar organic mode better facilitate preparative separations due 

to the ease of mobile phase removal after separation. 
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 The complexes of the form M3(dpa)4X2 could all be separated on the Chirobiotic V 

stationary phase with the exception of Cr3(dpa)4Cl2. The chromium trimetal complex was 

unstable under all conditions used in this study. Table 3.1 gives the formulas, 

chromatographic data, and optimized separation conditions used for each complex 

investigated. 

 Ammonium nitrate and ammonium trifluoroacetate were useful mobile phase 

additives for enantioseparation. For most separations, increasing the salt content decreased 

retention time and lowered the selectivity factor, but improved peak shape. This behavior is 

illustrated in Figure 3.2, where chromatograms of the separation of Ni3(dpa)4Cl2 (complex 3) 

appear at different additive concentrations.  

 The copper and cobalt complexes, 1 and 2 respectively, were nearly baseline 

separated using the Chirobiotic V column. The enantiomeric separations were confirmed by 

using a chiral detector in-line with UV detection. The retention factors were similar for 

complexes 1-3 (Table 3.1), but the resolution and selectivity varied for each metal complex. 

The Co and Cu complexes appear to decompose to varying degrees in the mobile phase. The 

chromatographic evidence for this was the appearance of a peak for the dissociated dpa 

ligand (data not shown).  

 The nickel complexes with the dpa ligand (3 and 4) were much more stable in 

solution and on the chromatographic column. Complex 3 was baseline separated (Fig. 3.3) as 

was complex 4. Even with different axial groups, at optimized separation conditions, the 

selectivity is the same for both complexes. 

 The last EMAC complex investigated, complex 5, consisted of a tri-nickel chain 

wrapped by two septadentate ligands (Fig. 3.1c). This complex showed no enantiomeric 
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separation in the polar-organic mode, but could be separated in the normal-phase mode. This 

complex contrasts with the others (1-4) which were also soluble in many organic solvents 

used in normal-phase mode chromatography, but could not be separated in that mode. 

 Polarimetry results showed high specific rotation for each enantiomer of the 

Ni3(dpa)4Cl2 complex (Table 3.2). The first and second eluted enantiomers are -5000+192 

deg·cc/g·dm and +5205+182 deg·cc/g·dm respectively. Two rotations of equal and opposite 

signs confirmed the enantiomeric separation. The Ni3(dpa)4Cl2  specific rotations are higher 

than those reported for some other compounds containing an axis of chirality [21-24].  For 

example, hexahelicene, an asymmetric molecule due to steric hindrance, has a reported 

specific rotation of -3640 deg·cc/g·dm [21]. Optically active polymers often have high 

optical rotations as well. Triphenylmethyl methacrylate was polymerized using (-)-sparteine-

n-Bu-Li complex as a chiral catalyst. The polymer contained no asymmetry, but had a helical 

axis and a reported specific rotation of +490 deg·cc/g·dm [23]. A specific rotation of +1355 

deg·cc/g·dm was reported for the polymerization of phenyl[bis(2-pyridyl)] methyl 

methacrylate with an (S)-(+)-1-(2-pyrrolidinylmethyl) pyrrolidine – N,N-

diphenylethylenediamine monolithium amide [24]. This polymer also has a one-handed 

helical structure. To our knowledge, the largest reported specific rotation (19,852 

deg·cc/g·dm) is for that of the chiral C76 fullerene [25].  

3.4 CONCLUSION 

 Five EMAC complexes with varying ligands and metals could be partially or baseline 

separated using the Chirobiotic V chiral stationary phase. Due to the instability of the 

complexes in water, the polar organic mode or the normal phase mode of chromatography 

was utilized. Mobile phase additives were determined to be necessary for enantioseparations 
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in the polar organic mode. These additives enhanced enantioselectivity but also improved 

resolution by increasing efficiency. Polarimetry experiments confirmed the enantiomeric 

separation and also determined that the nickel complex enantiomers have very high specific 

rotation values. 
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Table 3.1. Retention factor (k), selectivity, (α) and resolution (Rs) for metal complexes along 
with optimized separation conditions. 

 
# Formula k α∗ Rs Separation Condition 

1 Cu3(dpa)4Cl2 2.02 1.35 1.35 80/20 ACN/MeOH with 0.3% NH4TFA at 1 
mL/min 

2 Co3(dpa)4Cl2 2.44 1.08 1.10 90/10 ACN/MeOH with 0.3% NH4NO3 at 0.4 
mL/min 

3 Ni3(dpa)4Cl2 2.06 1.20 1.55 90/10 ACN/MeOH with 0.4% NH4NO3 
and 0.2% NH4TFA at 0.4 mL/min 

4 Ni3(dpa)4 (NCCH3)2(PF6)2 3.50 1.20 1.50 97/3 ACN/MeOH with 0.15% NH4TFA at 0.4 
mL/min 

5 Ni3(epapda)2(Ph4B)2 10.10 1.06 1.35 97/3 Heptane/1-propanol at 1.0 mL/min 

      
* Note that this α refers to the chromatographic selectivity factor (as defined in the materials 
and methods section) and it should not be confused with the specific rotations (given in Table 
2.2.) 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 

 

49 

Table 3.2. Polarimetric data for Ni3(dpa)4Cl2 specific rotation determination, where α589
22 is 

the observed rotation, c is the concentration of the complex, [α]589
22 is the specific rotation. 

All experiments were performed in methylene chloride and with a 1 dm cell. 
 

 α589
22 c [α]589

22 

First eluted enantiomer -0.0156 deg·cc/g·dm 3.12 x 10-6  g/cc -5000° +192 

Second eluted enantiomer +0.0228 deg·cc/g·dm 4.38 x 10-6  g/cc +5205° +182 
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Figure 3.1. Representation of M3(dpa)4X2 structure and various ligands. In 1A, M=Ni, Co, 
Cu, or Cr and X=Cl or ACN. In 1B, the dipyridylamido ligand (dpa-) is shown as well as the 
stick figure used in 1A. The epadpa2- ligand (N-N’-bis(4-ethylpyridyl amido pyridyl)-2,6-
diaminopyridine) is shown in 1C. 
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Figure 3.2. Chromatograms showing the additive effect on the enantioseparation of 
Ni3(dpa)4Cl2. The complex was separated on the Chirobiotic V with a mobile phase 
consisting of 90/10 ACN/MeOH with the percentage of NH4NO3 as shown on the 
chromatogram. The flow rate was 1 mL/min and detection was at 270 nm. 
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Figure 3.3. Enantioseparation of the trinickel dipyridylamido complex on the Chirobiotic V 
stationary phase. The mobile phase consisted of 90/10 ACN/MeOH with 0.4% w/v  NH4NO3 
and 0.2% w/v NH4TFA and the flow rate was 0.4 mL/min. Chromatogram A shows the 
enantiomeric separation when using UV detection (270 nm). Chromatogram B (below) is the 
same separation shown when using a circular dichroism detector (270 nm).   
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CHAPTER 4 

RESOLUTION OF ENANTIOMERS IN SOLUTION AND DETERMINATION OF 
THE CHIRALITY OF EXTENDED METAL ATOM CHAINS 

 
 

A paper published in Inorganic Chemistry3

Among the multifarious approaches1,2 to making molecular wires is one that aims to 

take the image of a real-life wire and scale it down to the greatest possible extent, as shown 

in Figure 4.1. Most efforts to follow this particular approach have entailed the use of 

poly(pyridylamide) ligands (Chart 4.1). In this way, the metals Cr (n = 0-2), Co (n = 0-2), Ni 

(n = 0-3), Cu (n = 0), Ru (n = 0), and Rh (n = 0) have been incorporated into molecules of the 

type shown in Figure 4.2 for the case of n = 0, and some of their properties (especially) for n 

= 0 have been studied in detail.2 For n = 0, the anion, dpa, is derived from dipyridylamine. 

One of the intrinsic properties of the chirality of extended metal atom chains (EMACs) is that 
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ABSTRACT 

The resolution of enantiomers of extended metal atom chains of the type 

Ni3[(C5H5N)2N]4Cl2 has been accomplished by chromatographic methods in solution, and the 

chirality was determined using vibrational circular dichroism, electronic circular dichroism, 

optical rotatory dispersion, and density functional theory calculations.  

4.1 COMMUNICATION 

                                                 
3 Reproduced with permission from Inorganic Chemistry, 2007, 46, 1535-1537. Copyright © 2007 American 
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they have a helical winding of the four insulating polypyridyl ligands around the central 

metal wire, but these species are typically isolated as racemic crystals. In one case where 

chiral crystals are formed, [Co3(dpa)4(CH3CN)2](PF6)2,3 the enantiomorphous crystals had to 

be separated by hand. To determine whether the conformation was P or M4 (Chart 4.2), each 

crystal had to be examined by X-ray crystallography. A general, simple approach for 

resolving chiral EMAC-type molecular wires, and establishing their chirality, is presented 

here for the first time.  

The results given here are for Ni3(dpa)4XCl molecules, where X represents Cl (1a) or 

OH (1b). Extensive efforts to obtain single crystals of the individual enantiomers were 

unsuccessful, but a few racemic crystals that appeared because of incomplete separation 

revealed that there was a roughly 1:1 mixture of Cl- and OH- axial anions. The replacement 

of Cl by OH evidently occurs in the course of the chromatographic separation. The 

separation of the P and M isomers was achieved by use of a preparative chromatographic 

procedure using a macrocyclic glycopeptide-based chiral stationary phase.5,6  

After collection of each enantiomer as it eluted from the column, the solvent from 

each enantiomeric mixture was evaporated to dryness. The samples were then dissolved in 

dichloromethane and washed with deionized water to remove the salt that was left from the 

mobile phase. The desiccant sodium sulfate was added to each of the 

enantiomer/dichloromethane mixtures and then allowed to stand for several hours to remove 

excess water. The sodium sulfate was then removed, and the dichloromethane was 

evaporated, leaving the resolved EMAC enantiomers.  
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To determine the absolute configuration of each enantiomer, chiroptical spectroscopic 

techniques were utilized. These included7 vibrational circular dichroism (VCD), electronic 

circular dichroism (ECD), and optical rotatory dispersion (ORD). The final interpretation 

was assisted by density functional theory (DFT) calculations. In this report, the labels 

(+)589nm and (-)589nm are employed to designate the signs of optical rotation (OR) of the 

enantiomers at 589 nm.  

The vibrational absorbance (VA) and VCD spectra of (+)589nm-1 and (-)589nm-1 were recorded 

in the mid-IR spectral region, from 2000 to 900 cm-1, with a 1 h data collection time, at 8 cm-

1 resolution.8 In the absorption and VCD spectra, shown in Figure 4.3, the solvent spectra 

were subtracted to establish the zero baseline. Additionally, a small frequency region 

between ~1238 and 1196 cm-1 has been excluded because the presence of a strong solvent 

absorption band in this region makes the solvent subtraction difficult.  

OR as a function of the concentration was measured on an Autopol IV polarimeter, using a 

1.0 dm cell. Solutions of (+)589nm- and (-)589nm-1 in a CHCl3 solvent were prepared by 

successive dilutions from a parent stock solution. OR measurements were made at all 

wavelengths accessible by the polarimeter: 633, 589, 546, 436, 405, and 365 nm. These 

concentration-dependent studies have resulted in data points ranging in concentration from 

~0.00013 to 0.000013 g/mL for the (-)589nm enantiomer and from ~0.000181 to 0.0000181 

g/mL for the (+)589nm enantiomer. The intrinsic rotation, which represents specific rotation at 

infinite dilution, was extracted from the ORs at different concentrations.  
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The calculations of vibrational frequencies, IR absorptions, VCD, and ECD were 

performed with the Gaussian 03 program.9 Geometry optimization was first carried out with 

the B3LYP functional. The same functional was also used for the VA and VCD calculations. 

On the basis of previous experience,10 the BHLYP functional, which uses an increased 

admixture of Hartree-Fock exchange in time-dependent DFT calculations, was also 

employed. The LANL2DZ basis set11 was used for all computations. A Kramers-Kronig 

transform of the calculated ECD intensities provided the ORD spectrum.12 The theoretical 

absorption and VCD spectra were simulated with Lorentzian band shapes and a 5 cm-1 half-

width at half-peak height. The calculated vibrational frequencies have been scaled by a factor 

of 0.9612. The theoretical ECD spectrum was simulated from the first 50 singlet singlet 

electronic transitions using Gaussian band shapes and a 20 nm half-width at 1/e of peak 

height.  

Panel A in Figure 4.3 shows the observed VA spectrum from 1100 to 1750 cm-1 and 

the calculated spectrum for the P enantiomer. The absorption bands are labeled, and a key to 

the assignments is provided as Supporting Information. The computation was done for 1a, 

and no account was taken of the fact that some axial OH groups were present in the 

experimental sample. This is why the Ni-O-H bending mode at ca. 1700 cm-1 is not in the 

computed spectrum. The ~1190-1240 cm-1 gap corresponds to strong absorption interference 

from the CHCl3 solvent. Panel B of Figure 4.3 shows the mirror-image VCD spectra of the 

(+)589nm and (-)589nm enantiomers. In panel C, the VCD spectrum of the (-)589nm enantiomer is 

compared with the VCD spectrum calculated for the P enantiomer.  
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The mirror-image ECD spectra13 of the (+)589nm and (-)589nm enantiomers of 1b and 

their comparison to the predicted ECD spectrum for the P enantiomers are shown in Figure 

4.3. It is clear that the (-)589nm enantiomer has P helicity, in agreement with the conclusion 

from the VCD results. The experimental ORD spectrum in the 400-650 nm region for the (-

)589nm enantiomer shown in Figure 5 exhibits a negative-positive-negative feature, which is 

reproduced by the ORD predicted for the P-helical structure. As for the ECD, the predicted 

positive ORD maximum at 533 nm and zero crossing positions at 458 and 573 nm are shifted 

from the corresponding positions (436, 414, and 500 nm, respectively) in the experimental 

ORD. These shifts are not unusual because it is well-known14 that DFT calculations do not 

yield accurate wavelengths for the electronic transitions.  

The agreement between the theoretical and experimental chiroptical spectra (VCD, ECD, and 

ORD) leads to the conclusion that the (-)589nm enantiomer of 1 has the P-helical configuration 

and, conversely, the (+)589nm enantiomer of 1 has the M-helical configuration.  
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Figure 4.1. How a normal wire (a) may be reduced to the smallest possible molecular wire 
(b). 
 

 

 

 

Chart 4.1 Poly(pyridylamide) Ligands 
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Figure 4.2 (a) Schematic drawing of an M3(dpa)4X2 EMAC. (b) End view showing the 
helicity (P in this case). 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Chart 4.2 Representation of the P helicity of Dipyridyl ligands. 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 

 

63 

 
 
 
Figure 4.3 VA (panel A) and VCD spectra of 1. The experimental VCD spectra are shown 
for both enantiomers in panel B. Calculated spectra for P-1a (topmost trace in panels A and 
C) were obtained with B3LYP/LANL2DZ. Calculated spectra in panels A and C have been 
shifted up for clarity. 
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Figure 4.4. Electronic CD spectra of 1. Experimental ECD spectra are shown for both 
enantiomers in the right panel. The predicted spectra for P-1a (topmost trace in the left panel) 
was obtained with time-dependent BHLYP/LANL2DZ and shifted up for clarity. 
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Figure 4.5. ORD spectra of 1. The right panel shows experimental spectra for the two 
enantiomers, while the left panel shows a comparison between the predicted ORD for the P 
enantiomer of 1 and the experimental spectrum for the (-)589nm enantiomer of 1. 
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CHAPTER 5 
 
 

EVALUATION OF FLEXIBLE LINEAR TRICATIONIC SALTS AS GAS-PHASE 
ION-PAIRING REAGENTS FOR THE DETECTION OF DIVALENT ANIONS IN 

POSITIVE MODE ESI-MS 
 
 

A paper accepted by Analytical Chemistry4

Anion analysis is of great importance to many scientific areas of interest.  Problems with the 

negative mode ESI-MS prevent researchers from achieving sensitive detection for anions.  

Recently, we have shown that cationic reagents can be paired with anions, such that detection 

can be done in the positive mode, allowing for low limits of detections for anions using ESI-

MS.  In this analysis, we present the use of 16 newly synthesized flexible linear tricationic 

ion-paring reagents for the detection of 11 divalent anions.  These reagents greatly differ in 

structure from previously reported trigonal tricationic ion-pairing agents, such that they are 

far more flexible.  Here we present the structural features of these linear trications that make 

for good ion-pairing agents, as well as, show the advantage of using these more flexible ion-

pairing reagents.  In fact, the limit of detection for sulfate using the best linear trication was 

found to be 25 times lower than when the best rigid trication was used.  Also, MS/MS 

experiments were performed on the trication/di-anion complex to significantly reduce the 
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4 Reproduced with permission from Analytical Chemistry, in press. 
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detection limit for many di-anions.  Limits of detection in this analysis were as low as 50 

femtograms. 

5.1 INTRODUCTION 
 
 Anion analysis is of great importance to environmental researchers, biochemists, food 

and drug researchers, and the pharmaceutical industry; all of which are continually in need of 

facile, sensitive analytical techniques that can be used to both detect and quantitate trace 

anions.1-22  Often, the anions of interest exist in complex matrices such as blood, water, and 

urine.2,6,9,12,14-17  For this reason, separation techniques are routinely coupled with anion 

detection.  Currently, some of these techniques utilize flow injection analysis or ion 

chromatography,20-25 with detection frequently obtained through the use of ion selective 

electrodes, conductivity, or spectroscopic techniques.26-30   Yet, these detection 

methodologies lack either universality or specificity.30  

 For many analytes, ESI-MS has provided broad specificity and lower detection limits.  

Given the anion’s inherent charge, it is not surprising that negative ion electrospray 

ionization mass spectrometry (ESI-MS) has come to the forefront as a general analytical 

approach that can be directly coupled with liquid chromatography (LC) if desired.  

Unfortunately, for most types of analytes, the negative ion mode often results in poorer limits 

of detection (LOD) than the preferred positive ion mode.31-34  Due to high negative voltages, 

the negative ion mode is more prone to corona discharge than the positive mode.34-35  This 

causes the negative mode to have an increased chance for arcing events and ultimately more 

noise resulting in unsatisfactory LODs.31  Corona discharge in the negative mode can be 

controlled by using halogenated solvents and substituting more alkylated alcohols (i.e., 

butanol or IPA) for methanol.32,35-36  Ideally, LC-ESI-MS methodologies would use more 
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common solvents, such as methanol, water, and acetonitrile.  Furthermore, it would be more 

practical to do all ion detection in the more stable and sensitive positive ion mode. 

 Recently, we have developed a method for the detection of singly charged anions in 

positive mode ESI-MS using only water/methanol solvents.37  This technique involves the 

addition of a low concentration of a dicationic ion pairing reagent to the mobile phase.  The 

dication pairs with the singly charged anion, resulting in a complex possessing an overall 

plus one charge, which can be detected in the positive ion mode.  Benefits of this technique 

include: (a) the use of more practical solvents, (b) substantial increases in the sensitivity, (c) 

ease of use, (d) the ability to detect anions that fall below a trapping mass spectrometer’s low 

mass cutoff region, and (e) detection of the complex at a much higher mass-to-charge region 

were there is far less chemical noise.  To fully take advantage of factor (e) alone, it is best to 

choose a relatively high molecular weight pairing agent that will result in a complex of a 

single positive charge. 

 Subsequently, the dicationic ion-pairing agent was used to determine the LODs for 

over 30 singly charged anions.37 Also in this work, it was shown for the first time that 

MS/MS can often be used to further lower the LODs of these anions.  Overall, this analysis 

showed the true ultra-sensitivity of ion-pairing by producing the lowest reported LODs for 

several anions by any known technique.37  The effectiveness of over 20 dicationic ion-pairing 

agents was evaluated in order to determine the structural properties that allow for low 

LODs.38  A major finding in this study was that flexibility of the dication seemed essential 

for good sensitivity.  Therefore, the best dicationic ion-pairing reagents cited were those 

which possessed a flexible alkyl chain that linked the two cationic moieties.  Recently, the 

ion-paring technique was extended to the use of tri-cationic reagents for the detection of 
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divalent anions.39  The essential tricationic reagents were found to bind divalent anions, and 

monitoring the complex in the positive ion mode was a more sensitive detection method than 

monitoring the naked doubly charged anions in the negative mode.  However, the tricationic 

reagents used had a somewhat rigid trigonal structure (for a representative structure see the 

bottom of Fig. 5.1), which may be an undesirable feature of an ion-pairing agent from a 

sensitivity standpoint. 

 Recently, we devised a synthetic method to produce linear trications, which may be 

more flexible than their trigonal counterparts.  In this work, we present the use of 16 newly 

synthesized linear tricationic ion-pairing reagents to determine the LOD for 11 divalent 

anions.  Herein, we describe the differences and advantages of using the more flexible linear 

trications versus the more rigid trigonal trications.  Also, we show that MS/MS experiments 

can be performed on the linear trication/di-anion complex, and that by monitoring a fragment 

of the complex, the LOD often can be dramatically lowered.  This is the first ever report of 

using this type of an MS/MS experiment to detect doubly charged anions in the positive ion 

mode with any tricationic ion-pairing agent. 

 
5.2 EXPERIMENTAL 

 
 Materials and the synthetic procedure for the tricationic ionic liquids are described in 

the supporting information, along with the ESI conditions.  Throughout this study, a Finnigan 

LXQ (Thermo Fisher Scientific, San Jose, CA, USA) ESI-MS was used for all of the 

analyses.  The MS was equipped with a six port injector (5 μL loop) and was coupled with a 

Finnigan Surveyor MS Pump.  Between the injector and the ionization source, a Y-type 

mixing tee allowed for the addition of flow from a Shimadzu LC-6A pump.  It was from this 
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pump that the tricationic ion-pairing agent was introduced to the solvent flow.  Overall, the 

total flow to the ESI was 400 μL/min.  The MS pump accounted for 300 μL/min (67% 

MeOH : 33% H2O), while the LC pump applied the 40 μM trication solution in water at a 

rate of 100 μL/min.  All the anions were dissolved in HPLC grade water, such that their 

initial concentration was 1 mg/mL.  Serial dilutions were made from the stock solutions and 

the anions were directly injected using the six port injector.  New stock solutions were 

prepared weekly and the injector was expected to be the largest cause for possible 

experimental error ( + 5%).  The limits of detection were determined to be when an injection 

at a given concentration resulted in peaks giving a signal-to-noise ratio of three. 

 
 

5.3 DISCUSSION 
 
 In previous reports, we have shown that dicationic ion-pairing reagents can be used to 

pair with singly charged anions, such that, the positively charged complex can be monitored 

in the positive mode, resulting in extremely low LODs.37-38  More recently, we demonstrated 

that tricationic reagents could also be used to complex doubly charged anions, leading to 

much lower LODs for those divalent anions when detecting the complex in the positive 

mode.39  Since the trications used previously had relatively rigid structures, a series of 

flexible ion-pairing agents were synthesized and tested to see if they offer greater sensitivity 

for the detection of anions in positive mode ESI.  In addition, MS/MS of the paired ions was 

examined in hopes of further lowering the LOD in many cases. 

 Figure 5.1 shows the structures of the 16 linear trications used in this analysis (A1-4, 

B1-4, C1-4, and D1-4).  All of the 16 linear trications have the same imidazolium core.  They 

differ in the length of the alkyl chain (C3, C6, C10, and C12) that tethers the terminal charged 
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moieties to the central imidazolium, as well as, in the nature of the terminal charged moieties 

(methylimidazolium, butylimidazolium, benzylimidazolium, and tripropylphosphonium).  By 

examining this series of linear trications, we were able to observe possible advantages of 

varying the chain length (i.e., flexibility) and determine which cationic moieties produce the 

lowest LOD for the sample anions.  Also shown in Figure 5.1, are the structures of two 

previously reported rigid trications.39 Of these, the E1 trication was shown to be a moderately 

successful pairing agent, while trication E2 was found to be the best known trigonal 

tricationic ion-pairing agent.39  The results of these two rigid trications allows for a definitive 

comparison to the new flexible trications developed for this study. 

 Table 5.1 lists the LODs for the 11 doubly charged anions, when paired with the 16 

linear trications and monitored in the positive mode.  Overall, the LODs for the divalent 

anions ranged from the nanogram (ng) to the picogram (pg) level.  In order to evaluate the 

effect of the chain length in the linear tricationic ion-pairing reagent, one can compare the 

trications of the same letter.  For example, trications D1-4 differ only in the length of the 

hydrocarbon chain connecting the charged moieties (Fig. 5.1).  In general, it appears that the 

common trend is that linear trications with hexyl or decyl linkage chains gave the lowest 

LODs, whereas, trications with propyl or dodecyl linkages resulted in higher LODs.  This 

trend can be easily seen by comparing the LOD for thiosulfate when using the “D” series of 

linear trications.  In this comparison, the order from best to worst ion-pairing agent was 

found to be D3, D2, D4, and D1.  A likely explanation for this observation is that when the 

alkyl linkage chain is too short, the linear trication is less flexible and not as likely to “bend” 

around the anion.  This finding supports our hypothesis that flexibility is a key feature in a 

good tricationic ion-pairing reagent.  In contrast, when the alkyl chain gets too long, the 
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cationic moieties are too far from each other and can not work as a single unit when binding 

the anion.  However, the effect of the linkage chain being too short is far more unfavorable 

than if it is too long.  An example of this can be seen in Table 5.1, were trication A1 with the 

shortest linkage chain was found to be one of the three worst ion-pairing agents for all 

anions.  Clearly, the results (Table 5.1 and Fig. 5.1) suggest that when using linear tricationic 

ion-pairing reagents, the alkyl linkage chain should be between six and ten carbons in length. 

 By evaluating the data for a series of trications that all have the same linkage chain, 

but different cationic moieties, the best terminal charged groups can be determined.  

Typically, the linear trications possessing the benzylimidazolium (the “C” moiety) and the 

tripropylphosphonium (the “D” moiety) terminal charged groups resulted in lower LODs 

than the methylimidazolium (the “A” moiety) or butylimidazolium (the “B” moiety) cationic 

groups.  This observation is shown by the LODs for oxalate when paired with the linear 

tricationic “2” series.  The order from best to worst ion-pairing agents was found to be C2, 

D2, A2, and B2.  Another example of this can be seen in the LODs for both nitroprusside and 

dichromate, where (from best to worst) the order was C2, D2, B2, and A2.  These results, 

along with the previously noted optimum linkage chain lengths, allow for the determination 

that trications C2 and D3 were the overall best tricationic ion-pairing agents.  Trication C2 

has hexyl linkage chains and benzylimidazolium terminal charged groups, and trication D3 

has decyl linkage chains and tripropylphosphonium cationic moieties.  Interestingly, in the 

three comprehensive studies we have done on ion-pairing agent structures, the 

tripropylphosphonium cationic moiety is the only one that has always resulted in a 

recommended ion-pairing agent.38-39 
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   The other important comparison to be made with the data in Table 5.1 is the LODs 

resulting from using the flexible linear trication versus the more rigid trigonal trications (E1 

and E2).  As can be seen, the best linear trications, C2 and D3, rank very near the top for 

most of the anions tested.  However, the best trigonal trication, E2, also ranks very near the 

top for many of the tested anions.  From this observation, it was determined that the best 

linear trications and the best trigonal trication both work well when monitoring the same 

divalent anions.  Interestingly, the linear and trigonal ion-pairing reagents seem to be 

complimentary to one another.  Overall, the best linear trication was not found to be a greatly 

superior ion-pairing agent when compared to the best trigonal trication.  Yet, some very 

useful and somewhat complimentary tricationic ion-pairing reagents were added to our 

repertoire.  However, if the trigonal trication E1 (the moderately successful trigonal trication) 

is compared to the flexible linear trications, it can be seen that trication E1 ranks near the 

bottom for all the anions tested.  It was determined that in general, the more flexible 

trications are better ion-pairing agents then the rigid trications.  Obviously, there are other 

factors that play a part in finding the optimum ion-pairing agent, which allow trication E2 to 

work as well as the linear trications.  Perhaps the most important factor is that it contains the 

highly favorable terminal tripropylphosphonium moiety. 

 Figure 5.2 illustrates the benefits of using a linear trication versus a trigonal trication 

for the detection of sulfate in the positive mode.  In both detection scenarios, the same 

concentration of sulfate was injected (500 pg).  In the upper panel (I), the ion-pairing agent 

was the best linear trication D3, and in the lower panel (II) the best trigonal trication E2 was 

used.  It is apparent that the linear trication resulted in superior detection of sulfate, with a 

signal-to-noise seven times greater that that for the trigonal trication.  It should be noted that 
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sulfate itself has a mass-to-charge ratio of -48, thus falling below the low mass cutoff of our 

MS instrument and rendering itself undetectable in the negative mode. 

 Another facet of this study was to show that selective reaction monitoring (SRM) 

experiments could be performed on the trication/anion complex, and that by monitoring a 

positively charged fragment of the complex, lower LODs for the divalent anions could be 

achieved.  The key part of this type of experiment is to find the proper fragment to monitor.  

In many cases the monitored fragment for a given tricationic reagent was the same, but not 

always.  Figure 5.3 shows a proposed fragmentation pattern for the more commonly observed 

dissociation of a trication D3/di-anion complex.  As is shown by Figure 5.3, collision 

induced dissociation (CID) typically resulted in a singly charged alkyl linked phosphonium 

imidazole, which had a mass-to-charge ratio of 367.4.  Monitoring this fragment can lead to a 

decrease in the LOD for the anion that was part of the parent complex. 

 Table 5.2 lists the results for the SRM experiments that were performed in this 

analysis.  Trications D3 and C2 were paired with 11 divalent anions and tested for their LOD 

using the SRM method.  For comparison, the SIM results are listed next to the SRM results.  

As can be seen, the SRM mode often resulted in lower LODs than the SIM mode.  There 

were two analytes (D3/bromosuccinate and C2/oxalate) that showed no improvement, but in 

general there was nearly an order of magnitude improvement when using the SRM mode.  In 

three cases, the SRM mode resulted in a two order of magnitude decrease in the LOD.  One 

of these cases was the detection of nitroprusside using trication C2 as the ion-pairing agent 

and employing the SRM mode.  For this system, the LOD for nitroprusside was determined 

to be 50 femtograms (fg), which is the lowest LOD for any mono- or divalent anion that has 

been tested to date.  Clearly this is a very facile and sensitive method. 
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 Also, listed in Table 5.2 are the SRM fragment masses that were monitored.  As noted 

previously, many complexes produce the same fragment; 367.4 for trication D3 and 309.2 for 

trication C2.  However, it was observed that there are some trication/di-anions that follow 

different disassociation pathways.  For example, the trication D3/hexachloroplatinate 

complex produced a fragment of m/z 1003.5.  This fragment corresponds to the loss of 

chloride from the hexachloroplatinate, while the overall cation-anion complex remained 

intact.  A similar effect was seen with the SRM detection for nitroprusside.  Here, 

nitroprusside loses a nitro group and still stays complexed with the trication.  For these cases, 

it is interesting to see that the non-covalent trication/di-anion complex remains intact, while 

covalent bonds have been broken.  One more example of this type of fragmentation was for 

bromine containing anions.  Here the central imidazolium loses its acidic proton (in the 2 

position of the imidazolium ring) and becomes a dication.  This dication then complexes with 

a bromide anion that was lost from the di-anion.  This means that for any bromine containing 

di-anions, the same fragment could be monitored (m/z 745/747 for D3 and m/z 629/631 for 

C2).  

 It should be noted that although the LODs for the 11 divalent anions in SIM and SRM 

are already quite low, they could be lowered further by completely optimizing the conditions 

for a particular complex.  In this analysis, one general set of conditions were used for the 

entire study.  Previously, we have shown that the LODs can be further decreased by a factor 

of three to ten with individual optimization of ESI condtions.37-39  Finally, the use of some 

other types of MS systems (triple quad, etc.) with this technique can further reduce detection 

limits. 
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5.4 CONCLUSIONS 
 
 Sixteen newly synthesized linear tricationic ion-pairing agents were evaluated for 

their ability to detect doubly charged anions in positive mode ESI-MS.  It was found that for 

linear trications, the optimum alkyl chain lengths coupling the cationic moieties should be 

between six and ten carbons in length.  It was determined that the best cationic moieties were 

tripropylphosphonium and benzylimidazolium.  In comparison to previously reported rigid 

tricationic ion-pairing agents, the flexible linear trications presented here generally make 

better MS ion-pairing agents.  It was shown that when the same amount of sulfate was 

injected, the signal-to-noise ratio when using the best linear trication was seven times greater 

than when using the best trigonal trication.  However, it was found that trigonal trication E2 

remained useful as it was often complimentary to the linear trications.  Lastly, one to three 

orders of magnitude decreases in the LODs were found when using SRM.    

  
5.5 REFERENCES 

 
(1)  Hebert, G.N.; Odom, M.A.; Craig, P.S.; Dick, D.L.; Strauss, S.H. J. Environ. Monit. 
2002, 4, 90-95. 
 
(2)  Magnuson, M.L.; Urbansky, E.T.; Ketly, C.A. Talanta 2000, 52, 285-291. 
 
(3)  Hansen, K.J.; Johnson, H.O.; Eldridge, J.S.; Butenhoff, J.L.; Dick, L.A. Environ. Sci. 
Technol. 2002, 36, 1681-1685. 
 
(4)  Cahill, T.M.; Benesch, J.A.; Gustin, M.S.; Zimmerman, E.J.; Seiber, J.N. Anal. Chem. 
1999, 71, 4465-4471. 
 
(5) Ghanem, A.; Bados, P.; Kerhoas, L.; Dubroca, J.; Einhron, J. Anal. Chem. 2007, 79, 
3794-3801.  
 
(6)  Wujcik, C.E.; Cahill, T.M.; Seiber, J.N. Anal. Chem. 1998, 70, 4074-4080. 
 



www.manaraa.com

 

 

77 

(7)  Li, X.C.; Lu, X.; Li, X. Anal. Chem. 2004, 26A-33A. 
 
(8)  Martinelango, P.K.; Anderson, J.L.; Dasgupta, P.K.; Armstrong, D.W.; Al-Horr, R.S.; 
Slingsby, R.S. Anal. Chem. 2005, 77, 4829-4835. 
 
(9)  Martinelango, P.K.; Guemues, G.; Dasgupta, P.K. Anal. Chim. Acta. 2006, 567, 79-86. 
 
(10)  Martinelango, P.K.; Tian, K.; Dasgupta, P.K. Anal. Chim. Acta. 2006, 567, 100-107. 
 
(11)  Barron, L.; Paull, B. Talanta 2006, 69, 621-630. 
 
(12)  Yamashita, N.; Kannan, K.; Taniyasu, S.; Horii, Y.; Okazawa, T.; Petrick, G.; Gamo, T. 
Environ. Sci. Technol. 2004, 38, 5522-5528. 
 
(13)  Wuilloud, R.G.; Altamirano, J.C.; Smichowski, P.N.; Heitkemper, D.T. J. Anal. At. 
Spectrom. 2006, 21, 1214-1223. 
 
(14)  Mandal, B.K.; Ogra, Y.; Suzuki, K.T. Chem. Res. Toxicol. 2006, 14, 371-378. 
 
(15)  Tsikas, D. Clin. Chem. 2004, 50, 1259-1261. 
 
(16)  Blount, B.C.; Valentin-Blasini, L. Anal. Chim. Acta. 2006, 567, 87-93. 
 
(17)  Olsen, G.W.; Hansen, K.J.; Stevenson, L.A.; Burris, J.M.; Mandel, J.H. Environ. Sci. 
Technol. 2003, 37, 888-891. 
 
(18)  Dyke, J.V.; Kirk, A.B.; Martinelango, P.K.; Dasgupta, P.K. Anal. Chim. Acta. 2006, 
567, 73-78. 
 
(19)  Elkins, E.R.; Hoeser, J.R. J. AOAC Int. 1994, 77, 411-415. 
 
(20)  El Aribi, H.; Le Blanc, Y.J.C.; Antonsen, S.; Sakuma, T. Anal. Chim. Acta. 2006, 567, 
39-47. 
 
(21)  Guo, Z.; Cai, Q.; Yu, C.; Yang, Z. J. Anal. At. Spectrom. 2003, 18, 1396-1399. 
 
(21)  Dudoit, A.; Pergantis, S.A. J. Anal. At. Spectrom. 2001, 16, 575-580. 
 
(22)  van Staden, J.F.; Tlowana, S.I. Fresenius J. Anal. Chem. 2001, 371, 396-399. 
 
(23)  Salov, V.V.; Yoashinaga, J.; Shibata, Y.; Morita, M. Anal. Chem. 1992, 64, 2425-2428. 
 
(24)  Ahrer, W.; Buchberger, W. J. Chromatogr., A 1999, 854, 275-287. 
 
(25)  Nischwitz, V.; Pergantis, S.A. J. Anal. At. Spectrom. 2006, 21, 1277-1286. 



www.manaraa.com

 

 

78 

 
(26)  Kappes, T.; Schnierle, P.; Hauser, P.C. Anal. Chim. Acta. 1997, 350, 141-147. 
 
(27)  Isildak, I.; Asan, A. Talanta 1999, 48, 967-978. 
 
(28)  Isildak, I.; Chromatographia 1999, 49, 338-342. 
 
(29)  Chakraborty, D.; Das, A.K. Talanta 1989, 36, 669-671. 
 
(30)  Buchberger, W.W. J. Chromatogr., A 2000, 884, 3-22. 
 
(31)  Cech, N.B.; Enke, C.G. Mass Spectrom. Rev. 2001, 20, 362-387. 
 
(32)  Voyksner, R.D. Combining Liquid Chromatography with Electrospray Mass 
Spectrometry.  In Electrospray Ionization Mass Spectrometry; Cole, R.B., Ed; Wiley: New 
York, 1997; pp 139-158. 
 
(33)  Henriksen, T.; Juhler, R.K.; Svensmark, B.; Cech, N.B. J. Am. Soc. Mass Spectrom. 
2005, 16, 446-455. 
 
(34)  Kebarle, P.; Yeunghaw, H. On the Mechanism of Electrospray Mass Spectrometry.  In 
Electrospray Ionization Mass Spectrometry; Cole, R.B., Ed; Wiley: New York, 1997; p 14. 
 
(35)  Straub, R.F.; Voyksner, R.D. J. Am. Soc. Mass Spectrom. 1993, 4, 578-587. 
 
(36)  Cole, R.B.; Zhu, J.H. Rapid Cummun. Mass Spectrom. 1999, 13, 607-611. 
 
(37)  Soukup-Hein, R.J.; Remsburg, J.W.; Dasgupta, P.K.; Armstrong, D.W. Anal. Chem. 
2007, 79, 7346-7352. 
(38)  Remsburg, J.W.; Soukup-Hein, R.J.; Crank, J.A.; Breitbach, Z.S.; Payagala, T.; 
Armstrong, D.W. J. Am. Soc. Mass Spectrom. 2008, 19, 261-269. 
 
(39)  Soukup-Hein, R.J.; Remsburg, J.W.; Breitbach, Z.S.; Sharma, P.S.; Payagala, T.; 
Wanigasekara, E.; Armstrong, D.W. Anal. Chem. 2008, 80, 2612-2616. 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 

 

79 

 
Table 5.1-Limits of Detection for Divalent Anions with Linear Tricationic Reagents* 

Trication LOD (pg) Trication LOD (pg) Trication LOD (pg) Trication LOD (pg)

D3 2.00 x 101 D3 6.25 x 101 C2 1.20 x 101 D4 2.50 x 101

D4 7.50 x 101 C2 6.25 x 101 D2 3.50 x 101 D3 2.63 x 101

D2 1.25 x 102 B3 6.25 x 101 A2 8.10 x 101 E2 3.75 x 101

B3 2.00 x 102 B2 6.25 x 101 D4 1.25 x 102 D2 4.25 x 101

B4 2.60 x 102 D2 7.50 x 101 B4 1.25 x 102 B3 9.00 x 101

C1 3.00 x 102 B4 7.50 x 101 D3 2.50 x 102 C3 1.50 x 102

B2 3.25 x 102 C1 8.75 x 101 E2 2.50 x 102 A3 2.00 x 102

C4 3.50 x 102 D4 9.00 x 101 A3 3.00 x 102 A2 2.00 x 102

C3 3.75 x 102 D1 1.00 x 102 B1 3.00 x 102 D1 2.00 x 102

C2 4.50 x 102 C4 1.00 x 102 B2 3.25 x 102 C4 2.10 x 102

B1 5.00 x 102 A3 1.00 x 102 C4 4.00 x 102 C2 2.25 x 102

E2 5.00 x 102 A4 1.00 x 102 C3 4.40 x 102 B2 2.75 x 102

A2 5.50 x 102 A2 1.25 x 102 C1 5.00 x 102 A4 4.50 x 102

A4 5.75 x 102 B1 1.25 x 102 E1 5.00 x 102 B4 5.00 x 102

A3 6.00 x 102 E2 1.25 x 102 A4 5.50 x 102 B1 8.75 x 102

D1 6.25 x 102 C3 1.75 x 102 A1 6.50 x 102 C1 1.50 x 103

E1 6.25 x 102 A1 5.00 x 102 D1 8.25 x 102 A1 4.50 x 103

A1 1.75 x 103 E1 7.50 x 102 B3 2.08 x 103 E1 5.00 x 104

Trication LOD (pg) Trication LOD (pg) Trication LOD (pg) Trication LOD (pg)

D3 1.25 x 102 D2 3.50 x 101 C2 7.00 C4 3.50 x 103

E2 1.79 x 102 B2 3.50 x 101 D1 7.50 B4 3.75 x 103

D1 2.00 x 102 D1 3.75 x 101 E2 7.50 C3 3.88 x 103

C1 2.75 x 102 D3 4.00 x 101 C1 1.00 x 101 B3 4.25 x 103

B4 3.25 x 102 C2 5.00 x 101 D2 1.25 x 101 A3 5.00 x 103

B1 3.50 x 102 B1 7.00 x 101 B1 1.25 x 101 D4 5.50 x 103

B3 3.75 x 102 B3 7.50 x 101 D3 2.00 x 101 D3 6.25 x 103

A3 4.50 x 102 B4 7.50 x 101 B2 2.00 x 101 A4 6.25 x 103

C3 5.00 x 102 C1 7.50 x 101 C3 2.25 x 101 B1 6.25 x 103

D4 5.00 x 102 A2 7.50 x 101 B3 2.50 x 101 C2 6.38 x 103

A4 5.00 x 102 E2 7.50 x 101 A2 2.50 x 101 C1 6.50 x 103

D2 6.25 x 102 C4 8.50 x 101 A3 3.00 x 101 D2 7.50 x 103

C2 7.50 x 102 D4 1.00 x 102 B4 3.25 x 101 B2 7.50 x 103

B2 7.50 x 102 C3 1.25 x 102 D4 3.75 x 101 A2 7.50 x 103

A2 2.50 x 103 A3 1.25 x 102 C4 3.75 x 101 D1 8.75 x 103

A1 3.00 x 103 A4 1.75 x 102 A1 3.75 x 101 E2 1.00 x 104

E1 5.00 x 103 A1 5.00 x 102 E1 4.86 x 101 E1 1.25 x 104

C4 5.00 x 104 E1 1.58 x 103 A4 5.00 x 101 A1 1.50 x 104

Trication LOD (pg) Trication LOD (pg) Trication LOD (pg)

E2 7.50 x 101 E2 1.50 x 101 E2 7.50 x 101

B3 2.50 x 102 D1 1.63 x 101 C4 6.25 x 102

C4 2.75 x 102 C1 1.75 x 101 D3 7.50 x 102

D3 3.75 x 102 B1 2.00 x 101 D1 7.50 x 102

B1 4.00 x 102 C2 3.20 x 101 A4 8.00 x 102

C2 4.25 x 102 B4 4.00 x 101 C2 1.00 x 103

C3 4.40 x 102 B2 4.00 x 101 B4 1.00 x 103

D4 5.00 x 102 D2 4.75 x 101 C3 1.50 x 103

D2 5.00 x 102 D3 6.50 x 101 D4 2.00 x 103

C1 5.00 x 102 A4 6.50 x 101 D2 2.25 x 103

B2 5.00 x 102 C3 7.50 x 101 A3 3.75 x 103

B4 5.25 x 102 E1 7.50 x 101 B3 4.00 x 103

A4 5.50 x 102 D4 1.00 x 102 E1 4.99 x 103

A3 7.00 x 102 B3 1.00 x 102 C1 5.00 x 103

D1 7.50 x 102 A3 1.00 x 102 A2 5.00 x 103

A2 7.50 x 102 A2 1.25 x 102 B2 5.50 x 103

E1 1.13 x 103 A1 3.75 x 102 B1 7.50 x 103

A1 3.38 x 103 C4 8.75 x 103 A1 1.25 x 104

Dichromate

Sulfate Thiosulfate Oxalate Fluorophosphate

Selenate o-Benzenedisulfonate Bromosuccinate

Dibromosuccinate Hexachloroplatinate Nitroprusside

 
        *The limit of detection was determined to be the amount of analyte that resulted in S/N = 3.  
                         Also, the data for E1 and E2 was extracted from reference 39. 
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Table 5.2-Comparison of LODs in the SIM positive and SRM positive modes 

 

SIM LOD (pg) SRM LOD (pg) SRM Mass SIM LOD (pg) SRM LOD (pg) SRM Mass

Sulfate 2.00 x 101 1.50 x 101 367.4 4.50 x 102 3.00 x 102 309.2
Thiosulfate 6.25 x 101 5.00 x 10-1 367.4 6.25 x 101 3.50 x 101 309.2
Oxalate 2.50 x 102 1.00 x 102 367.4 1.20 x 101 7.50 x 101 549.2
Fluorophosphate 2.63 x 101 2.05 x 101 367.4 2.25 x 102 1.00 x 102 309.2
Dibromosuccinate 1.25 x 102 1.25 x 101 745/747 7.50 x 102 2.00 x 101 629/631
Hexachloroplatinate 4.00 x 101 4.50 1003.5 5.00 x 101 2.00 x 101 889.4
Nitroprusside 2.00 x 101 3.50 853.5 7.00 5.00 x 10-2 737.4
Dichromate 6.25 x 103 5.75 x 102 367.4 6.38 x 103 3.00 x 103 643.4
Selenate 3.75 x 102 2.00 367.4 4.25 x 102 6.00 x 101 309.2
o-Benzenedisulfonate 6.50 x 101 1.00 x 101 367.4 3.20 x 101 3.75 x 101 309.2
Bromosuccinate 7.50 x 102 1.00 x 103 745/747 1.00 x 103 1.00 x 103 629/631

Trication D3 Trication C2
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Figure 5.1.  Structures of the tricationic ion-pairing reagents used in this analysis. 
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Figure 5.2.  Comparison of the detection of sulfate in the positive mode using tricationic ion-
paring reagents D3 (I) and E2 (II). 
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Figure 5.3. Proposed fragmentation pattern for a typical SRM experiment using trication D3. 
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ABSTRACT 
 
A general and sensitive method for detecting divalent anions by ESI-MS and LC-ESI-MS as 

positive ions has been developed. The anions are paired with tricationic reagents to form 

positively charged complexes. In this study, four tricationic reagents, 2 trigonal and 2 linear, 

were used to study a wide variety of anions, such as disulfonates, dicarboxylates, and 

inorganic anions. The limits of detection for many of the anions studied were often improved 

by tandem mass spectrometry. Tricationic pairing agents can also be used with 

chromatography to enhance the detection of anions. The tricationic reagents were also used 

to detect monovalent anions by monitoring the doubly charged positive complex. The limits 

of detection for some of the divalent anions by this method are substantially lower than by 

other current analytical techniques. 
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6.1 INTRODUCTION 
 

The analysis of anions is of great necessity and interest in many fields of science. 

Low levels of organic acids have been determined in a variety of samples such as food, 

environmental, and biological matrices [1-9]. Some dicarboxylic acids, such as glutaric, 

fumaric, and adipic acids are marker compounds for certain metabolic disorders and have 

been determined in urine samples [10].  Aromatic sulfonates are used in many industrial 

processes and consumer products, such as laundry detergents. Many of these sulfonates end 

up in wastewater and municipal water supplies and have been determined by various 

methods [3, 11]. Because of the ramifications of low levels of anions in the environment, fast 

and effective trace methods of analysis are very important.  

Complex environmental sample matrices often require a separation technique to 

isolate the analyte. Common separation methods include ion chromatography, [1, 12-15] ion 

pair chromatography, [3, 11, 16] reverse-phase mode chromatography, [17-19] and capillary 

electrophoresis (CE) [4, 5, 20].   To enhance the spectroscopic detection of anions that do not 

contain a UV chromophore, some CE and high performance liquid chromatography (HPLC) 

methods utilize sample derivatization [21, 22] or indirect UV or fluorescence detection 

methods [23-25].  Ions have also been detected by ion selective electrodes and conductivity 

[26-31].   Mass spectrometry (MS) is a universal detector for anions and is being used more 

and more, either alone [13, 32] or paired with a separation technique [3, 6, 18, 33].  

Electrospray ionization (ESI)-MS is a logical choice for ion detection because of the 

inherent charge state of the analyte. Negative mode ESI-MS is the most common way of 

detecting anions. Problematically, negative ion mode operation with standard 

chromatographic solvents, such as methanol and water, can lead to poor spray stability, 
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corona discharge, and arcing, which ultimately lead to poor detection limits [34, 35]. 

Halogenated solvents [35-38] or electron scavenging gases [39] can be used to suppress these 

effects.  

Operating in positive mode ESI would help to avoid the stability problems of 

negative mode ESI-MS and the use of unconventional solvents. A method was developed to 

detect singly charged anions using positive mode ESI-MS by pairing the anion with a 

dicationic reagent to create a positively charged complex [14, 15, 40-43].  There are multiple 

advantages to this method beyond the use of positive mode ESI-MS. One benefit of 

monitoring the anion/dication pair is moving the anion to a higher mass region where there is 

lower background noise. Additonally, anions of low mass are moved well above the low 

mass cutoff when ion trap instruments are used. Also, the pairing reagents may be used to 

differentiate between the analyte of interest and an interference of the same m/z [40]. 

Most recently, tricationic reagents were paired with divalent anions, which again 

could be detected as a singly charged complex [44, 45].  The first group of tricationic 

reagents used as pairing agents were classified as trigonal trications [44].  These trications 

have fairly rigid structures and provided detection sensitivity enhancement for many of the 

anions tested. Past results have indicated that rigid dicationic pairing agents did not work as 

well as more flexible dications [43], so a second class of tricationic reagents was developed. 

The second group of tricationic reagents are linear and more flexible [46]. The limit of 

detection (LOD) for some of the divalent anions tested was lower for the linear trications 

than the trigonal cations [45]. In the present study, the best two trigonal and two linear 

tricationic reagents from these previous studies will be used to determine detection sensitivity 

for a wide variety of divalent anions. LOD trends for a given tricationic reagent or class and 
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analyte type (e.g. dicarboxylate, disulfonate) would aid in future method development.  The 

use of tricationic reagents in MS-MS and possible dissociation mechanisms are discussed as 

well. Additionally, these tricationic reagents can be used for the detection of monovalent 

anions as a doubly charged complex, which has not been previously studied with tricationic 

reagents. This leads to the possibility of detecting both singly and doubly charged anions 

using a singular tricationic reagent. 

 

6.2 EXPERIMENTAL 
 

 The water and methanol used in these experiments were of HPLC grade and obtained 

from Burdick and Jackson (Morristown, NJ). Reagent grade sodium hydroxide and sodium 

fluoride were from Fisher Scientific (Pittsburgh, PA). The anions listed in Tables 6.1 and 6.3 

were purchased as either the sodium or potassium salt or in the acid form from Sigma-

Aldrich, with the exception of butanedisulfonic acid and 1,5-naphthalenedisulfonic acid 

which were purchased from TCI America (Portland, OR). Stock solutions (1 mg/mL) were 

made weekly and diluted serially for analysis. 

 The tricationic reagents evaluated in this study, as shown in Figure 1, were 

synthesized according to previous reports [44-47].  Before analysis, each trication was anion 

exchanged to the fluoride form as previously reported [44].  

 For direct injection analysis, a 40 μM trication-fluoride solution was pumped into a 

Y-type mixing tee at 100μL/min using a Shimadzu LC-6A pump (Shimadzu, Columbia, 

MD). Also directed into the mixing tee was a 2:1 mixture of methanol:water at a flow rate of 

300 μL/min using the Surveyor MS pump (Thermo Fisher Scientific, San Jose, CA). This set 

up leads to an overall solvent composition of 50/50 water/methanol with 10μM tricationic 
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reagent and a total flow rate of 400 μL/min. The six-port injection valve on the mass 

spectrometer (5 μL loop) was used for sample introduction.  

 A Finnigan LXQ (Thermo Fisher Scientific) ESI-MS was used for the analysis of 

anions in this study. The ESI-MS conditions used were: spray voltage 3kV; sheath gas flow, 

37 arbitrary units (AU); auxiliary gas flow rate, 6 AU; capillary voltage, 11 V; capillary 

temperature, 350° C; tube lens voltage, 105 V. The trication-anion complex was monitored in 

SIM mode with a width of 5 m/z units. This range was chosen to include isotope peaks, and 

LOD determinations were made from extracted ion chromatograms of the cation-anion 

complex m/z.  For SRM experiments, the isolation width was 1-5 units with a normalized 

collision energy of 30 and an activation time of 30 ms. Data were analyzed using the 

Xcalibur and Tune Plus software. The limits of detection were determined when multiple 

injections of a given concentration resulted in a signal-to-noise ratio of three. 

 For the chromatography experiments, sample introduction was made by a Thermo 

Fisher Surveyor autosampler (5 μL injections). The stationary phase used was a Cyclobond 1 

(25cm x 2.1 mm) obtained from Advanced Separation Technology (Whippany, NJ). The 

flow rate was 300 μL/min, and the column was equilibrated with 100% methanol and a step 

gradient to 100% water was applied at 5 minutes. The tricationic reagent (40μM) was added 

to the column effluent at 100 μL/min via the mixing tee. The MS was operated in SIM mode, 

monitoring the mass of each di-anion/trication complex throughout the chromatographic run.   

 
6.3 RESULTS AND DISCUSSION 

 

 The tricationic reagents used in this study were chosen to represent the best 

performing trigonal and linear trications used in previous studies [44, 45]. These four 
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tricationic reagents offer a variety of functional groups as well as differences in rigidity. The 

linear trications contain an imidazolium core with different chain lengths and terminal 

charged groups. Linear trication 1 (LTC 1, Fig 6.1) has C10 linkages between the central 

imidazolium and tripropylphosphonium (TPP) terminal charged groups.  Linear trication 2 

(LTC 2, Fig 6.1) has benzylimidazolium terminal charge groups with a C6 linkage chain.  

Trigonal trication 1 (TTC 1, Fig 6.1) has a benzene core with three TPP charged groups. 

Trigonal trication 2 (TTC 2, Fig 6.1) consists of a mesitylene core with three n-

butylimidazolium groups in the 2,4,6 positions.  

 A variety of divalent anions were chosen to evaluate the ion-pairing performance of 

the tricationic reagents. The anions can be divided into categories based on their functional 

groups. The groups are: disulfonates, dicarboxylates, metal containing compounds, sulfur-

oxo compounds, and miscellaneous compounds. Within the disulfonate and dicarboxylate 

categories, an effort was made to include compounds with varying chain lengths and 

functional groups to investigate any effect these might have on limits of detection.  

 Table 6.1 shows the 34 divalent anions used in this study and their limits of detection 

using each of the 4 tricationic reagents. They are arranged into the anion categories with the 

lower limits of detection at the top of each category. An examination of the LODs with the 

bold type-face, which indicate the lowest LOD for each anion, in Table 6.1 indicates that 

about 2/3 of the lowest LODs are for the linear tricationic reagents. Additionally, LTC 1 and 

TTC 1, which are the phosphonium containing reagents, (Fig. 6.1), account for 26 (of 34) of 

the lowest LODs. The exceptional overall performance of the TPP reagents for this set of 

divalent anions is in agreement with previous studies [45].  
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 Generally, the disulfonates have lower limits of detection than dicarboxylates. The 

lowest LODs for the disulfonates are for dihydroxynaphthalenedisulfonate and m-

benzenedisulfonate using TTC 1. The disulfonates with aromatic groups 

(dihydroxynaphthalenedisulfonate, m-benzenedisulfonate, 4-formyl-m-benzenedisulfonate, 

anthraquinone-2,6-disulfonate) usually had lower LODs than the straight chain disulfonates. 

Methane, ethane, propane, and butane disulfonic acids were evaluated with each tricationic 

reagent. There does not appear to be a trend in the detection limit based on the increasing 

chain length for the disulfonic acids except when using TTC 1, where methane disulfonic 

acid had a higher LOD than for the longer chain disulfonates. For the disulfonate category as 

a whole, the trigonal trication reagents performed better than the linear ones. 

 Two of the other sulfur containing compounds, besides the disulfonates, also showed 

low LODs. In fact, the LOD for tetrathionate, using LTC 1, is the lowest of all the anions 

tested when operating in SIM mode (50 femtograms). Tetrathionate and peroxidisulfate were 

very near the lowest LODs for both LTC 1 and 2, but had LODs higher than most of the 

disulfonates for TTC 1 and 2. There appears to be excellent complexation for these sulfur-

oxo compounds with the linear trications. 

 Among the dicarboxylates studied, dipivaloyl-tartrate has the best LOD when pairing 

with all of the trications studied and for LTC 1 has a lower LOD than all of the disulfonates. 

For the tricationic reagents with benzene/mesitylene cores or charged groups (LTC 2, TTC 1, 

and TTC 2), the dicarboxylates with non-halogen chain substitutions (dipivaloyl-tartrate, 

phenylsuccinate, methylsuccinate, and malate) have lower limits of detection than the 

straight chain dicarboxylates (Table 6.1). The halogenated dicarboxylates (chlorosuccinate 

and dibromomaleate) had lower LODs using the trigonal trications (Table 6.1). For the 
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straight chain dicarboxylates studied, glutarate, (C5), had the lowest limit of detection, 

followed by pimelate, (C7), and then adipate, (C6). With LTC 1, the LOD for adipate is about 

7 times higher than for glutarate, though they only differ by one carbon in chain length. For 

the dicarboxylate category in general, the linear trications outperformed the trigonal ones. 

 The inorganic compounds studied generally had higher LODs than the organic acids 

and disulfonates. ReCl6
 2- showed the best results of the inorganic compounds studied and 

had a limit of detection in the top five for LTC 1, LTC 2, and TTC 2. Two phosphorus 

containing compounds were also studied. Phenyl phosphate had lower LODs than hydrogen 

phosphite. This result is in general agreement with earlier work that used dicationic reagents 

and singly charged anions, which found that more oxidized species had better LODs [42]. 

 The additional application of the tricationic reagent to enhance detection for 

chromatography is shown in Figure 6.2. Three dianions (camphorate, phenylsuccinate, and 

naphthalene-1,5-disulfonate) are separated using a beta-cyclodextrin stationary phase. The 

trication is added post-column. The better peak shape for the late eluting naphthalene-1,5-

disulfonate peak is likely due to the step gradient employed. The first two peaks are 

broadened before the mobile phase is changed, while the third peak is eluted by the strong 

solvent. Chromatographic retention and separation of dianions could be very useful in cases 

of complex sample matrixes. 

 The limits of detection for most of the divalent anions could be reduced by using 

selected-reaction monitoring (SRM). Some advantages of SRM are to improve specificity in 

analysis, to lower noise in the region being analyzed, and/or to eliminate interference by a 

background ion in the mass spectrometer. In SRM, the dianion-trication complex is trapped, 
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excited, and the transition to a resultant fragment is monitored. SRM analysis was peformed 

for each dianion and the results are shown in Table 6.2.  

 For LTC 1, most SRM transitions were to a fragment of the trication. Most of the 

dianion/trication complexes fragmented to either m/z 665.5 [LTC1-2H]+1 or m/z 367.4 

corresponding to the C10TPPImidazole (shown in Fig. 6.3a). The inorganic anions, 

tetrathionate, peroxidisulfate, fumarate, phenylphosphate, and phenyl succinate did not 

fragment to m/z 665 or 367.4. For these -2 anions, a portion of the dianion was lost and the 

+1 complex between a trication fragment and the remainder of the dianion was monitored. 

An example is tetrathionate where the complex fragment monitored (m/z 811.6) corresponds 

to the loss of SO3. The most common fragments for LTC 2, were either the loss of 1 

hydrogen each from 2 of the imidazolium rings (m/z 551.3) or the loss of the 

benzylimidazolium group (Fig 6.3b). For the complexes that lost the benzylimidazolium 

group, the dianion stayed complexed with the remainder of the trication. Unconventional 

fragmentation occurred with LTC 2 for the inorganic anions, peroxidisulfate, tetrathionate, 

rhodizonate, phenylphosphate, and dihydroxynaphthalenedisulfonate.  

 The predominant fragment monitored for TTC 1 is the loss of two hydrogens from the 

methylene carbons between the phosphorus and benzene ring. Only manganate, 

peroxidisulfate, tetrathionate, hexachlororhenate, and chromate underwent alternate 

fragmentation. The major fragmentation pathway for TTC 2 is the loss of the 

butylimidazolium group from the overall complex, so the dianion remains with the rest of the 

trication. Arsenate, peroxidisulfate, tetrathionate, rhodizonate, hexachlororhenate, 

glutaraldehyde bisulfate, dihydroxynaphthalenedisulfonic acid, adipate, pimelate, 
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succinaldehyde bisulfite, and camphorate followed alternate fragmentation patterns with TTC 

2.  

 The group of compounds that had the largest improvements in LOD between SIM 

and SRM were the disulfonates. With one or more of the trications studied, each disulfonate 

had its LOD improved by at least an order of magnitude. The disulfonates were the only 

analytes to follow fragmentation for LTC 1 and LTC 2 as shown in Figure 6.3a and 6.3b, 

respectively. While the largest change in LOD was seen for the linear trications, the trigonal 

trications had the lowest LOD for 5 of the 9 disulfonates studied. 

 Chlorosuccinate and dibromomaleate also had interesting fragmentation patterns. In 

the case of these analytes, the halogen is lost from the anion and remains paired with the 

trication (or a portion of it). This was seen in our previous study on the linear trications [45]. 

Figure 6.4a illustrates a proposed fragmentation pattern for dibromomaleate using TTC 1. 

The distinct isotopic pattern for one bromine atom (Fig. 6.4c) is evidence of the gas phase 

association of the bromine with a +2 fragment of the trication. The improvement in LOD 

between SIM and SRM was larger for the halogenated dicarboxylates using the trigonal 

trications. 

 Phenylphosphate showed an improvement of 2-3 orders of magnitude by SRM for 

both linear trications. The SRM LODs for the dicarboxylates ranged from just slightly better 

than SIM LODS to about 8 times better, with the exception of fumarate and malonate which 

showed 18-fold (LTC 2) and 20-fold (LTC 1) improvements, respectively. Arsenate (LTC 2), 

hexachlororhenate (LTC 2, TTC 1), and 1,5-pentanedisulfonate, 1,5-dihydroxy (LTC 1) were 

the only other analytes with improvements of an order of magnitude or more. In general, the 

linear trications had lower LODs for SRM than the trigonal cations. 
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The tricationic reagents can pair with doubly charged anions to form complexes with 

an overall +1 charge, but can also pair with singly charged anions to form +2 complexes. 

Five “mono-anions” were evaluated using the four tricationic reagents to determine their 

limits of detection. The data for SIM and SRM for these anions is shown in Table 6.3. The 

LOD for benzenedisulfonate both by SIM and SRM is the lowest for the five singly charged 

anions tested.  In comparison to the SIM LOD for the dicationic reagents tested in a previous 

study [43] the LOD for benzenedisulfonate ranks second using LTC 1 as a pairing reagent. 

The LODs in this study for perfluoroctanate and monochloroacetate are better than 7-8 (of 

23) of the dicationic pairing reagents previously studied [43]. The ability of the tricationic 

reagents to pair with doubly and singly charged anions shows that the use of a single 

tricationic pairing reagent could be used to evaluate both monovalent and divalent anions 

simultaneously. 

The LODs in this study compare favorably with those reported for anion analysis by 

other methods. There are many methods reported for the analysis of biologically relevant 

organic acids. In our study, the LODs for fumarate and methylsuccinate were 10 and 24 pg, 

respectively. Lower limits were determined, 0.9 pg fumarate and 0.5 pg methylsuccinate, by 

an LC method where the analytes were subjected to a long derivatization process to use 

fluorescence detection [21].  CE analysis with indirect UV detection was used to determine 

levels of various organic acids. The LODs under the optimized CE conditions for malonic 

acid, methylsuccinic acid, glutaric acid, and adipic acid reported are 144 pg, 37.3 pg, 34.9 pg, 

and 72.2 pg respectively. Our SRM tricationic method showed lower LODs for the malonic 

and methylsuccinic acids (100 pg and 24 pg), similar results for the glutaric acid (37.5 pg), 

and higher results for adipic acid (120 pg) [24].  A number of the analytes in that study had 
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very similar migration times and without a more specific detection method, might be 

indistinguishable in that analysis. 

Larger improvements over previous methods were seen with the disulfonates. An 

LOD of 200 pg for benzenedisulfonate by LC-UV was reported [19]. Using our method and 

TTC 1, the LOD for the same analyte is 8.75 pg using SIM detection and 500 fg using LTC 1 

and SRM detection. Other aromatic sulfonates were determined in concentration ranges of 

0.1-1 ng/ml by solid phase extraction-ion pair chromatography using UV detection [11] and 

100-400 ng/ml by CE-MS [3].  The LOD for napthalene-1,5-disulfonic acid was determined 

by ion interaction chromatography both by the direct injection of a large sample volume 

(100uL) and preconcentration (sample volume of 50 mL) [16]. The LODs were 20 ng for the 

large sample volume and 30 ng for the sample preconcentration. Using the tricationic pairing 

method and no preconcentration, the LOD for this analyte is 12.5 pg in SIM mode and 461 fg 

in SRM. 

The analysis of inorganic ions is also important, though not always as facile as the 

detection of organic acids or disulfonates. A coated-wire membrane sensor electrode was 

used to determine chromate levels in solution [48].  The LOD for this method was 

determined in a solution that was 116 ng/mL. In our analysis of chromate, the lowest solution 

concentration we analyzed was 8 ng/mL in SRM mode using TTC 2, for an absolute 

detection limit of 40 pg.  Molybdate levels in various water samples were determined by 

coprecipitation and neutron activation analysis, a very labor intensive technique which can 

necessitate the use of a reactor [49]. The limit of detection for this method was 1 pg/mL 

using a 100 mL sample, for an absolute detection of 100 pg of molybdate. Using LTC 1, the 

LOD for molybdate in SRM is 25 pg. Another precipitation method was used to 
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preconcentrate ReCl6
2-  followed by detection using selective excitation of probe ion 

luminescence [50].  In this study, 150 pg of ReCl6 was needed to see an observable signal. In 

our study, ReCl6
2- was determined well below 150 pg in both SIM (15 pg) and SRM (2 pg) 

monitoring modes. 

  
6.4 CONCLUSIONS 

 
 Four optimal tricationic pairing reagents were used to determine the limits of 

detection for 34 divalent anions and 5 monovalent anions. These linear and trigonal 

tricationic reagents performed about equally as a whole, but the two trications with 

tripropylphosphonium cationic moieties outperformed trications with imidazolium based 

charge groups. When evaluating tricationic reagents, our results show that the linear 

trications provide lower limits of detection for most classes of compounds and should be 

tested first. The exception to this is the determination of disulfonates, where trigonal 

trications generally perform better. The use of tandem MS on the trication/di-anion complex 

helps to improve the sensitivity of detection for most of the dianions studied. Those 

complexes that dissociate into fragments not common to the trication showed the lowest 

limits of detection. Tricationic ion-pairing agents can also be used to determine monovalent 

anions by monitoring the +2 complexes. Therefore, mixtures of monovalent and divalent 

anions could be studied using a single tricationic reagent. Many of the LODs in this study are 

better or similar to those that have been previously reported, however this method is 

advantageous as it does not involve intricate sample preparation nor preconcentration and 

may be accessible to more laboratories. 
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Table 6.1. Limits of detection for divalent anions using four tricationic pairing reagents in selected 
ion monitoring (SIM) mode.* 

Linear Trications    Trigonal Trications    
LTC 1 LTC 2 TTC 1 TTC 2

LOD (ng) LOD (ng) LOD (ng) LOD (ng)
Disulfonates

dihydroxynaphthalenedisulfonate 7.50E-02 5.00E-02 7.50E-03 1.20E-02
m-benzenedisulfonate 2.50E-02 5.00E-02 8.75E-03 1.00E-02

4-formyl-m-benzenedisulfonate 1.25E-01 3.75E-02 1.00E-02 1.50E-02
naphthalene-1,5-disulfonate 6.00E-02 1.25E-02 2.00E-02 3.00E-02

butanedisulfonate 1.25E-01 5.00E-02 3.00E-02 2.00E-02
propanedisulfonate 1.00E-01 2.00E-01 2.45E-02 7.50E-02

anthraquinone-2,6-disulfonate 2.50E-02 5.00E-02 7.50E-02 5.00E-02
methanedisulfonate 1.00E-01 3.00E-02 6.00E-02 3.00E-02
ethanedisulfonate 3.50E-02 2.25E-01 3.60E-02 4.00E-02

1,4-butanedisulfonate, 1,4-diydroxy 1.25E+01 2.50E+01 1.25E+00 5.00E+00
1,5-propanedisulfonate, 1,5-dihydroxy 3.50E+00 2.50E+00 1.75E+00 2.50E+00

Dicarboxylates
dipivolyltartarate 1.75E-02 1.25E-02 1.50E-02 1.50E-02

camphorate 6.00E-02 1.50E-01 6.00E-02 5.00E-01
phenylsuccinate 1.50E-01 7.50E-02 5.00E-02 1.00E-01

glutarate 7.00E-02 2.00E-01 1.00E+00 5.00E-01
malate 2.60E-01 5.00E-02 2.25E-01 5.00E-01

methylsuccinate 2.00E-01 7.50E-02 2.50E-01 1.00E-01
fumarate 1.50E-01 4.00E-01 1.50E+00 7.50E+00
pimelate 1.50E-01 2.00E-01 2.50E+00 7.50E-01
malonate 2.00E+00 1.38E+00 8.75E-01 3.00E-01
adipate 5.00E-01 8.00E-01 2.25E+00 1.50E+00

dibromomaleate 8.50E-01 1.00E+00 1.00E-01 1.75E-01
chlorosuccinate 3.75E+00 1.88E+00 2.25E-01 9.00E-01

Metal Containing Compounds
hexachlororhenate (ReCl6) 1.50E-02 3.00E-02 1.50E-01 2.00E-02

chromate CrO4 2.50E-01 7.50E-01 6.25E+00 7.50E-02
molybdate MoO4 1.50E-01 2.50E+00 3.75E-01 7.50E-01
manganate MnO4 1.00E+00 --- 3.75E-01 8.75E-01

arsenate AsO4 7.50E-01 2.25E+00 2.50E+00 1.00E+00

Sulfur-Oxo Compounds
tetrathionate S4O6 5.00E-04 2.25E-02 2.50E-02 5.00E-02

peroxidisulfate S208 1.20E-02 1.65E-02 7.50E-02 2.00E-01

Miscellaneous compounds
phenylphosphate 4.00E-02 1.00E-01 7.50E-02 5.00E-02

rhodizonate 1.05E-01 5.00E-01 3.75E+00 3.75E-01
hydrogen phosphite 1.50E-01 5.00E-01 3.75E-01 2.50E-01

selenite 1.25E+00 --- 3.50E-01 3.75E+00  

* Limit of detection determined where the amount of analyte used results in S/N=3. Bold typeface indicates the 
lowest limit of detection for each anion. --- indicates that a dianion/trication complex was not observed. 
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Table 6.2. Limits of detection for divalent anions using four tricationic pairing reagent in selected 
reaction monitoring (SRM) mode.* 

Linear Trications    Trigonal Trications    
LTC 1 LTC 2 TTC 1 TTC 2

LOD (ng) LOD (ng) LOD (ng) LOD (ng)
Disulfonates

dihydroxynaphthalenedisulfonate 2.75E-03 5.00E-03 7.50E-03 1.20E-03
m-benzenedisulfonate 5.00E-04 3.00E-03 6.25E-03 1.25E-03

4-formyl-m-benzenedisulfonate 5.00E-03 1.00E-02 --- 1.50E-03
naphthalene-1,5-disulfonate 4.61E-04 4.38E+00 4.50E-03 3.60E-03

butanedisulfonate 4.50E-03 6.25E-03 3.50E-03 4.50E-03
propanedisulfonate 2.00E-02 1.25E-02 7.50E-03 4.50E-03

anthraquinone-2,6-disulfonate 1.13E-03 7.50E-04 3.60E-03 7.90E-03
methanedisulfonate 3.25E-03 3.15E-03 4.50E-02 3.00E-03
ethanedisulfonate 1.50E-03 8.75E-03 1.44E-02 9.80E-03

1,4-butanedisulfonate, 1,4-diydroxy 7.50E+00 1.50E+01 1.50E+00 5.50E+00
1,5-propanedisulfonate, 1,5-dihydroxy 5.00E-02 2.50E+00 8.75E-01 3.00E+00

Dicarboxylates
dipivolyltartarate 6.25E-03 3.75E-03 1.00E-02 5.50E-03

camphorate 4.50E-02 4.50E-02 3.00E-02 2.00E-01
phenylsuccinate 1.00E+00 7.50E-02 1.00E-01 2.50E-02

glutarate 3.75E-02 6.00E-02 7.50E-01 1.50E-01
malate 7.00E-02 1.50E-02 --- ---

methylsuccinate 2.40E-02 3.75E-02 1.05E-01 4.00E-02
fumarate 1.00E-02 2.25E-02 1.50E+00 ---
pimelate 3.00E-02 7.50E-02 3.25E+00 7.50E-01
malonate 1.00E-01 1.20E-01 3.00E-01 5.00E-01
adipate 1.20E-01 2.25E-01 2.25E+00 1.50E+00

dibromomaleate 7.50E-02 3.00E-02 3.50E-02 2.50E-03
chlorosuccinate 1.50E+00 3.75E+00 4.50E-01 ---

Metal Containing Compounds
hexachlororhenate (ReCl6) 2.00E-03 3.00E-03 1.00E-02 2.00E-02

chromate CrO4 7.50E-02 2.25E-01 3.00E-01 4.00E-02
molybdate MoO4 2.50E-02 2.50E+00 5.00E-01 1.58E-01
manganate MnO4 3.75E-01 --- 1.25E-01 7.50E-01

arsenate AsO4 9.00E-02 2.00E-01 5.75E-01 2.75E-01

Sulfur-Oxo Compounds
tetrathionate S4O6 1.00E-05 4.00E-04 5.00E-04 5.00E-03

peroxidisulfate S208 1.25E-03 1.15E-03 6.75E-03 6.00E-03

Miscellaneous compounds
phenylphosphate 5.00E-06 1.00E-03 1.13E-02 1.50E-02

rhodizonate 1.05E-01 5.00E-01 3.75E+00 1.25E-01
hydrogen phosphite 3.25E-02 2.00E-01 1.00E+00 3.50E-02

selenite 7.50E-02 --- 7.00E-02 2.63E+00  

* Limit of detection determined where the amount of analyte used results in S/N=3. Bold typeface indicates the 
lowest limit of detection for each anion. --- indicates that a dianion/trication complex was not observed. 
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Table 6.3. LODs in SIM and SRM modes for monovalent anions using four tricationic pairing 
reagents.* 

Linear Trications    Trigonal Trications    
LTC 1 LTC 2 TTC 1 TTC 2

SIM Mode LOD (ng) LOD (ng) LOD (ng) LOD (ng)
benzenesulfonate 1.50E-03 9.00E-03 1.50E-02 3.13E-03

perflurooctanoic acid 5.00E-02 2.75E-02 1.50E-02 5.00E-02
trifluoromethanesulfonimide 1.05E-02 7.50E-02 3.00E-02 1.00E-01

monochloroacetic acid 7.00E+00 1.25E+01 1.00E-01 2.00E+00
benzoate 6.25E+01 8.75E+00 3.75E+00 9.65E-02

SRM Mode LOD (ng) LOD (ng) LOD (ng) LOD (ng)
benzenesulfonate 9.50E-05 2.70E-03 3.50E-03 1.38E-03

perflurooctanoic acid 3.00E-04 4.13E-03 3.00E-03 1.63E-03
trifluoromethanesulfonimide 1.05E-02 6.00E-02 2.50E-02 3.43E-04

monochloroacetic acid --- 1.00E+01 1.00E-02 7.50E-02
benzoate --- 8.75E+00 3.75E-01 9.65E-02  

* Limit of detection determined where the amount of analyte used results in S/N=3. Bold typeface 
indicates the lowest limit of detection for each anion. --- indicates that a dianion/trication complex 
was not observed. 
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Figure 6.1. The structures of the four tricationic ion-pairing reagents used in this study.  
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Figure 6.2. An extracted ion chromatogram representing the LC separation of camphorate 
(peak 1), phenylsuccinate (peak 2), and naphthalene-1,5-disulfonate (peak 3) with the 
retention times (RT) also listed. This separation was performed on a β-cyclodextrin 
stationary phase (2.1mm x 25 cm) which was equilibrated with 100% methanol. A step 
gradient to 100% water was applied at 5 minutes. The flow rate was 300 uL/min and 40 uM 
LTC 1 was teed into the effluent at a flow rate of 100 uL/min. The three trication-dianion 
complex masses were monitored in SIM mode. 
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Figure 6.3. Proposed fragmentation pathways for the disulfonates using LTC 1 (a) and LTC 2 
(b). A2- represents a general divalent anion and HA- is a singly protonated divalent anion. 
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Figure 6.4. Proposed fragmentation pathway of the SRM transition for dibromomaleate(a). 
Panel (b) shows an injection monitoring the SRM transition from m/z 869675.33 and 
677.42. Panel (c) is the fragment spectrum observed for the peak shown in (b). The main 
peaks are 2 mass units apart and nearly the same height, indicative of Br.  
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ABSTRACT 
 
 A general method for detecting bisphosphonate drugs by ESI-MS and LC-ESI-MS as 

positive ions has been developed. Bisphosphonates can have multiple negative charges in 

solution. Tricationic ion-pairing reagents were paired with bisphosphonates to form a 

positively charged complex.  It was clear that this facile pairing method worked. However an 

appreciable presence of -1 bisphosphonate species were observed in positive mode ESI-MS 

(i.e. as the +2 complex with tricationic reagents). This led to an extended investigation on the 

use of dicationic pairing agents. The use of dicationic reagents improved the detection 

sensitivity for all of the bisphosphonates. Tandem mass spectrometry also improved the 

limits of detection for most of the bisphosphonates using both the tricationic and dicationic 

pairing reagents. A tricationic reagent also was used as an ion-pairing reagent in 

chromatography experiments. Thus the addition of a single reagent produced benefits in that 

it increased chromatographic retention and enhanced the ESI-MS detection of 

bisphosphonates. 
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7.1 INTRODUCTION 
 

Bisphosphonates are a class of drug with a P-C-P backbone structure. These drugs are 

used to treat bone-related diseases, such as osteoporosis and Paget’s disease [1, 2]. The 

detection of bisphosphonates using many traditional separation methods is a challenge 

because most bisphosphonates either lack or have weak UV chromophores. Bisphosphonates 

also exist in multiple charge states in solution and are very polar, which can limit 

chromatographic options. In reverse phase HPLC, bisphosphonates elute at or near the dead 

volume without the use of  ion pairing agents. 

Conductivity and indirect UV detection have been used to detect bisphosphonates in 

capillary electrophoresis (CE) [3] and ion chromatography (IC) experiments [4, 5], 

respectively. Derivatization methods for fluorescence and spectrophotometric detection have 

also been reported [6-8]. Evaporative light scattering detection [9] and charged aerosol 

detection [10] have also been employed for the detection of bisphosphonates. Most 

separation methods are based on CE, anion-exchange chromatography, or ion-pair 

chromatography [4, 5, 7, 8]. 

A few reports on the use of mass spectrometry (MS) for the detection of 

bisphosphonates have appeared in the literature. Trimethylsilyl-clodronate derivatives were 

analyzed by GC-MS [11]. Anion-exchange chromatography coupled with ICP-MS detection 

was used to determine alendronate and etidronate [12]. Electrospray ionization (ESI)-MS was 

used in negative-ion mode when coupled with CE and also to investigate bisphosphonate 

charge states and fragmentation [13, 14]. Positive ion-mode IC-ESI-MS-MS was used to 

detect diazomethane derivatives of the nitrogen containing bisphosphonates risedronate and 

alendronate [15]. 
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ESI-MS is a logical choice for bisphosphonate detection because the analyte is 

negatively charged at a wide range of pH values. Negative ion mode ESI-MS is the most 

common method to detect anions, however standard chromatographic solvents, such as 

methanol and water can lead to poor spray stability, corona discharge, and arcing. These 

disadvantages ultimately lead to poor detection limits [16, 17]. Recently, a method was 

developed to detect singly charged anions using positive mode ESI-MS by pairing the anion 

with a dicationic reagent to create a positively charged complex [18-21]. The use of 

tricationic reagents which pair with divalent anions for the detection of a +1 complex also 

has been reported recently [22-24]. Using positive mode ESI-MS avoids spray stability 

problems. Beyond this, pairing the anion with the dicationic or tricationic reagent has other 

benefits. For example, monitoring the anion/cation pair moves the detected species to a 

higher mass region where there is lower background noise. Also, anions of low mass may be 

moved well above the low mass cutoff of ion trap instruments. 

In this study, tricationic and dicationic pairing agents are examined as a general 

analytical approach for the ESI-MS and LC-ESI-MS of seven bisphosphonate compounds. 

Their use in MS-MS and possible dissociation mechanisms also will be discussed. 

Additionally, these ion-pairing reagents can be used in the mobile phase to enhance the 

chromatographic retention and separations of bisphosphonates on a C18 stationary phase. 

 
7.2 EXPERIMENTAL 

 
 HPLC grade water and methanol was obtained from Burdick and Jackson 

(Morristown, NJ). Reagent grade sodium hydroxide and sodium fluoride were purchased 

from Fisher Scientific (Pittsburgh, PA). Etidronic acid sodium, alendronate disodium 
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hydrate, clodronic acid disodium salt, and neridronate were purchased from Sigma-Aldrich 

(Milwaukee, WI). Risedronate sodium and ibandronate were purchased from AkSci 

(Mountain View, CA) and zoledronic acid was purchased from Waterstone Technology 

(Carmel, IN). Stock solutions (1 mg mL-1) were made weekly and diluted serially for 

analysis.  

 The tricationic and dicationic reagents used in this study were synthesized according 

to previous reports [19, 22, 23, 25-27]. Before analysis, each cationic reagent was anion 

exchanged to the fluoride form as previously reported [18, 22]. 

 For direct injection analysis, a 40 μM dication-fluoride or trication-fluoride solution 

was pumped into a Y-type mixing tee at 0.1 mL min-1 using a Shimadzu LC-6A pump 

(Shimadzu, Columbia, MD). A 67:33 methanol:water mixture was also directed into the 

mixing tee at a flow rate of 0.3 mL min-1 using the Surveyor MS pump (Thermo Fisher 

Scientific, San Jose, CA). The resulting flow into the mass spectrometer is 50:50 

methanol:water with a cationic pairing reagent concentration of 10 μM and a total flow rate 

of 0.4 mL min-1. The six-port injection valve on the mass spectrometer (5 uL loop) was used 

for sample introduction. 

 A Finnigan LXQ (Thermo Fisher Scientific, San Jose, CA) ESI-MS was used for the 

analysis of anions in this study. The ESI-MS conditions used were: spray voltage 3 kV; 

sheath gas flow, 37 arbitrary units (AU); auxiliary gas flow rate, 6 AU; capillary voltage, 11 

V; capillary temperature, 350° C; tube lens voltage, 105 V. The trication-anion complex was 

monitored in SIM mode with a width of 5 m/z units. For SRM experiments, the isolation 

width was 1-5 units with a normalized collision energy of 30 and an activation time of 30 ms. 

These conditions were used for all compounds for comparison purposes, but the optimization 
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of parameters for a given complex often leads to an improvement in sensitivity. Data were 

analyzed using the Xcalibur and Tune Plus software. The limits of detection were determined 

when multiple injections of a given concentration resulted in a signal-to-noise ratio of three. 

 For the chromatography experiments, the mobile phase was pumped isocratically 

using a Shimadzu LC-6A pump. Sample introduction was made by a six-port injection valve 

(Rheodyne, Cotati, CA).  The stationary phase used was a Supelco Ascentis C18 (25 cm x 2.1 

mm, 5 μm particle). The mobile phase was 80:20 50 µM tricationic reagent:methanol with a  

flow rate of 0.3 mL min-1. Methanol (0.1 mL min-1) was teed into the flow post-column. The 

MS was operated in SIM mode, monitoring the mass of each bisphosphonate/trication 

complex throughout the chromatographic run. 

 
7.3 RESULTS AND DISCUSSION 

 
 The first facet of this study was an investigation on the use of tricationic pairing 

reagents with bisphosphonate analytes. In aqueous solution at pH 6, the predominant 

bisphosphonate species has a -2 charge, so paired with the tricationic reagent, a +1 overall 

complex will be observed by MS. The tricationic reagents used in this study were chosen to 

represent the best performing trigonal and linear trications identified in previous studies [22-

24]. These four tricationic reagents (Fig. 7.1) offer a variety of functional groups as well as 

differences in rigidity. The linear trications (TriA and TriB) contain an imidazolium core 

with different chain lengths and terminal charged groups. TriA (Fig. 7.1) has C10 linkages 

between the central imidazolium and tripropylphosphonium (TPP) terminal charged groups.  

TriB has benzylimidazolium terminal charge groups and C6 linkage chains.  TriC and TriD 

(Fig. 7.1) are trigonal trications, which have a more rigid structure. TriC consists of a 
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mesitylene core with three n-butylimidazolium groups in the 2,4,6 positions. TriD has a 

benzene core with three TPP charged groups.  

 The seven bisphosphonates used in this study are illustrated in Figure 7.2. Table 7.1 

shows the LOD results for each of the bisphosphonates using the four tricationic reagents. In 

the SIM mode, ibandronate had the lowest limit of detection (1.3 ng, TriA) of all of the 

bisphosphonates. In general, ibandronate and the other nitrogen-containing bisphosphonates 

(alendronate, risedronate, neridronate, zoledronate) had lower LODs than etidronate and 

clodronate. The LODs for some of the analytes varied significantly with the use of different 

tricationic reagents. For example, the lowest LOD for zoledronate was found with reagent 

TriC (2.5 ng) while the use of TriD resulted in an LOD which was 20 times higher (50 ng).  

Also, the same tricationic reagent often showed varying LODs for the analysis of different 

bisphosphonates. The LOD for neridronate (1.5 ng) using reagent TriA was 23 times better 

than the LOD for etidronate (35 ng) when using the same pairing agent. Overall, TriC and 

TriA were found to be the best tricationic pairing reagents for the bisphosphonates in this 

study. TriD performed poorly for all of the analytes. 

 Selected reaction monitoring (SRM) improved the limits of detection to varying 

degrees for all of the bisphosphonates analyzed when using tricationic reagents (Table 7.1). 

Some advantages of SRM are to improve specificity in analysis, to lower background noise 

in the region being analyzed, and/or to eliminate interference by a background ion in the 

mass spectrometer. In SRM, the bisphosphonates-trication complex is trapped, excited, and 

the transition to a resultant fragment is monitored.  

 For the linear trications, TriA and TriB, most SRM transitions involved the loss of a 

portion of the bisphosphonate while the remainder stayed complexed with the tricationic 
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pairing reagent. This is illustrated in Figure 7.3. For neridronate, MS-MS of the neridronate-

TriB complex results in a fragment which is 82 Da lighter. This loss corresponds to H2PO3. 

MS-MS of the remaining fragment results in [TriB-2H]+ at m/z 549.5. The trigonal trication 

complexes primarily fragmented to a portion of the trication. For TriC the monitored 

fragment corresponds to the loss of the butylimidazolium group from the overall complex, 

while for TriD, the monitored fragment corresponds to [TriD-2H]+. 

In terms of overall sensitivity, the linear trications, TriA and TriB, are the best 

tricationic agents for use in SRM mode. Using reagent TriA, the LODs for all of the 

bisphosphonates are 500 pg or less. All LODs were also sub-ng in the SRM mode using 

reagent TriB. Improvements in sensitivity between SIM and SRM mode ranged from a 1.25 

fold improvement for zoledronate using TriC, to a 70 fold improvement for etidronate using 

reagent TriA.  Some of the largest improvements were seen with TriA (5-70 fold). For 

alendronate, the lowest LOD in SIM mode is 2.75 ng using TriC. In SRM mode, its LOD is 

improved by a factor of about 2 using TriC (1.5 ng) and by a factor of 7 to an overall lower 

limit of detection (375 pg) using reagent TriA. This illustrates that the best reagent for a 

particular analyte in SIM mode might not always show the highest sensitivity in SRM mode. 

The linear trications had lower LODs in SRM than the trigonal trications, possibly due to the 

difference in fragmentation trends or their more flexible nature.  It should also be noted that 

in SRM mode, the LODs for etidronate and clodronate are more similar to those of the 

nitrogen containing bisphosphonates in SRM mode. 

 Though trication-bisphosphonate complexes were observed, the LODs were higher 

than expected based on previously reported LODs using these reagents and other types of 

divalent anions [23, 24]. It turns out that when using a +3 reagent, the signal intensity for +2 
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complexes was higher than for +1 complexes. The +2 signals corresponded to the 

complexation of -1 charged bisphosphonates (BP), either [BP-2+H]- or [BP-2+Na]- with the 

tricationic agents. Attempts to further control the charge state of the bisphosphonates in 

solution by increasing the pH to ensure deprotonation did not increase the amount of +1 

complex observed. It is more likely that the bisphosphonates are protonated during the 

electrospray process. This is consistent with previous ESI studies of bisphosphonates. In 

negative mode ESI-MS, the predominant bisphosphonate species was found to be -1, even at 

solution pHs that would indicate nearly complete dissociation to the -2 species [13,14]. It was 

apparent that the dominant bisphosphonate species is -1 in positive mode ESI. Therefore, it 

would be more advantageous to use dicationic pairing agents which should provide even 

greater sensitivity.    

Four of the most useful dicationic reagents (Fig. 7.4) with a variety of structures and 

charged groups were chosen to evaluate LODs for bisphosphonates. These four dicationic 

reagents were found to be the best of 23 ion-pairing reagents evaluated for a variety of singly 

charged anions [19]. DiA consists of 2 benzylimidazolium groups with a C5 alkyl linkage 

chain. DiB has a C3 linkage chain with 2 tripropylphosphonium charged groups. DiC is a C9 

alkyl chain linking 2 methylimidazolium charge groups and DiD has pyrolidinium charged 

groups with a C5 linkage chain and N-butyl groups.  

 The bisphosphonates were evaluated with the dicationic reagents in the same manner 

as were the tricationic reagents. The results are shown in Table 7.2. In the SIM mode, 

ibandronate had the lowest LOD of all the bisphosphonates using DiA (300 pg) and DiC (325 

pg). Sub-ng LODs for alendronate (400 pg) and zoledronate (750 pg) were also found with 

reagents DiA and DiB, respectively. As with the tricationic reagents, the nitrogen containing 
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bisphosphonates generally had lower LODs than clodronate and etidronate in the SIM mode. 

Large differences can be seen in the LODs for a single bisphosphonate using various 

dicationic reagents. The LOD for neridronate using DiD is 21.3 ng, while the LOD using 

DiA is 1.3 ng which is about 20 times better. There was also a wide range of LODs when 

using one dicationic reagent and different bisphosphonates. The LODs for all 

bisphosphonates using DiA fall into a range of over an order of magnitude, from 0.3-4.5 ng. 

For DiD, the lowest LOD is for zoledronate (2.5 ng) while the highest is for clodronate (75 

ng), which is a 30 fold difference. Clearly, it is important to test more than one cationic 

reagent to find the best sensitivity for a given bisphosphonate analyte. Overall, DiA and DiB 

were the best dicationic reagents for detecting bisphosphonates (lower LODs). 

 The limits of detection when using dicationic reagents were lowered for all of the 

bisphosphonates when operating in the SRM mode (Table 7.2). The lowest LOD in SRM 

mode is 170 pg for ibandronate using reagent DiC. Every SRM LOD for DiA is 500 pg or 

less making it the best dicationic reagent for use in SRM. While the LODs were not 

necessarily the lowest for a given analyte, larger improvements in sensitivity between the 

SIM and the SRM mode were seen for DiC and DiD. For neridronate the LOD decreased 

about 85 times between SIM and SRM mode (21.3 ng vs. 0.25 ng) using reagent DiD. DiC 

showed a 20 fold improvement between SIM and SRM for clodronate (50 ng vs. 2.5 ng). The 

SRM fragmentation for DiC and DiD was similar to that of the linear tricationic reagents, 

where a portion of the bisphosphonate molecule is lost and the resultant complex is 

monitored. A previous study using MS-MS with dication-anion complexes found that 

phosphonium and pyrrolidinium based dicationic reagents did not work well in SRM mode 

because they do not fragment significantly [19]. In our study, DiB and DiD can be used in 
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SRM monitoring and show improvements in sensitivity for bisphosphonates, even with their 

phosphonium and pyrrolidinium charge groups, because the dicationic reagent remains intact. 

 For SIM mode, the best LOD using tricationic reagents for each bisphosphonate was 

improved upon by using dicationic pairing reagents. Zoledronate, ibandronate, and 

alendronate showed the largest improvements (3, 4, and 7 fold, respectively) between the 

best tricationic and the best dicationic reagent. The LODs using dicationic reagents in SRM 

mode were also lower than the best tricationic reagent SRM LODs. The LOD for ibandronate 

was 3 times lower using SRM mode with DiA than for TriC, which is the greatest 

improvement seen when comparing SRM mode LODs. The lowest LOD for 5 of the 7 

bisphosphonates (ibandronate, neridronate, risedronate, etidronate, clodronate) was found in 

the SRM mode using dicationic reagents.  For alendronate and zoledronate, the best LOD 

was found in SRM mode with one or more of the tricationic reagents. For these 

bisphosphonates, if MS-MS capabilities are present, the best tricationic reagent (TriA) should 

be used, but for SIM analysis, the dicationic reagents are superior. 

 Previous reports on the use of dicationic or tricationic pairing reagents have shown 

that they can be used with LC by post-column addition to a reverse phase mode eluent for 

use in ESI-MS detection [18, 19, 24]. Bisphosphonates do not retain in typical reverse phase 

conditions, so this was not possible for this study. Since many chromatographic methods for 

bisphosphonates rely on ion-pair formation, it was thought that the dicationic or tricationic 

pairing reagents could be used as a mobile phase additives to both increase chromatographic 

retention and enhance MS detection. Tricationic reagent B was used successfully to increase 

retention and separate clodronate, etidronate, and neridronate as shown in Figure 7.5. The 

overall concentration of tricationic pairing reagent in the mobile phase is 40μM. Typical ion-
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pair experiments using amine pairing reagents or monocationic pairing reagents (e.g. ionic 

liquids) typically use much higher concentrations, from 1-50 mM. Ion pair chromatography 

with negative mode ESI-MS is often used to analyze oligonucleotides. In these experiments, 

the ion pairing reagent is used solely for chromatographic retention and the negatively 

charged, unpaired oligonucleotide is determined by MS [28,29]. Tricationic reagent B was 

used successfully to increase retention and separate clodronate, etidronate, and neridronate 

and the ion pairing agent complexes with the bisphosphonates for MS detection as shown in 

Figure 5. The overall concentration of tricationic pairing reagent in the mobile phase is 40 

μM. To the best of our knowledge, this is the first report of a tricationic reagent as an LC 

mobile phase additive.To the best of our knowledge, this is the first report of a tricationic 

reagent as an LC mobile phase additive. Furthermore it is both interesting and essential that 

these multifunctional ion pairing agents work at much lower concentration in LC, since 

higher concentrations can negate the advantage of positive ion ESI-MS detection of anions 

[21]. 

 
7.4 CONCLUSIONS 

 
 Trigonal and linear tricationic ion-pairing reagents were used to determine the limits 

of detection of seven bisphosphonate drugs both in using SIM and SRM modes. SRM mode 

lowered the LOD for all of the bisphosphonates. It was clear that this pairing method works, 

however the presence of -1 bisphosphonate species in positive mode ESI-MS led to the 

investigation of dicationic pairing reagents. The LODs for all of the bisphosphonates in SIM 

mode showed improvement with the use of dicationic reagents versus tricationic reagents. 

Using dicationic reagents in SRM mode, the LODs for bisphosphonates were lowered 
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compared to SIM mode and compared to the SRM mode when using tricationic pairing 

reagents. Tricationic reagent TriB can also be used as an ion-pairing reagent in reversed 

phase chromatography experiments to increase retention and subsequently pair with the 

bisphosphonate for ESI-MS detection.  
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Table 7.1. Limits of detection for the tricationic pairing reagents and bisphosphonates in SIM 
and SRM modea. 

SIM SRM SRM
ng injected ng injected fragment

monitored
ibandronate

TriC 1.3E+00 1.0E+00 724.4
TriA 2.0E+00 5.0E-01 801.7
TriB 2.5E+00 5.0E-01 685.5
TriD 8.0E+00 1.8E+00 595.5

neridronate
TriA 1.5E+00 2.8E-01 842.7
TriC 2.0E+00 1.5E+00 682.3
TriB 5.5E+00 5.0E-01 744.5
TriD 8.0E+01 4.8E+00 595.5

risedronate
TriC 1.9E+00 5.8E-01 688.2
TriB 4.5E+00 4.5E-01 750.5
TriA 1.2E+01 4.0E-01 866.7
TriD 1.5E+01 3.0E+00 796.5

zoledronate
TriC 2.5E+00 2.0E+00 677.4
TriA 6.0E+00 3.8E-01 745.6
TriB 7.5E+00 7.5E-01 739.6
TriD 5.0E+01 5.0E+00 785.5

alendronate
TriC 2.8E+00 1.5E+00 654.2
TriA 3.8E+00 3.8E-01 814.6
TriB 4.0E+00 6.0E-01 698.5
TriD 5.0E+01 2.0E+01 595.5

etidronate
TriC 3.0E+00 2.1E+00 611.3
TriB 3.9E+00 4.3E-01 673.5
TriD 2.0E+01 4.8E+00 595.5
TriA 3.5E+01 5.0E-01 789.7

clodronate
TriA 1.0E+01 5.0E-01 809.6
TriB 2.0E+01 5.6E-01 693.4
TriC 2.0E+01 5.0E-01 649.3
TriD 5.0E+01 7.5E+00 595.5  

 
 

a Limit of detection determined where the amount of analyte used results in S/N=3. 
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Table 7.2. Limits of detection for bisphosphonates using dicationic reagents.a 

 

SIM SRM SRM
ng injected ng injected fragment

monitored
ibandronate

DiA 3.0E-01 3.0E-01 686.4
DiC 3.3E-01 1.6E-01 590.5
DiB 1.5E+00 1.1E+00 662.4
DiD 2.8E+00 1.5E+00 560.2

neridronate
DiA 1.3E+00 5.0E-01 562.2
DiB 2.0E+00 1.1E+00 620.4
DiC 5.8E+00 5.0E-01 466.3
DiD 2.1E+01 2.5E-01 500.4

risedronate
DiB 1.1E+00 1.7E-01 562.3
DiC 2.8E+00 5.6E-01 490.3
DiA 3.5E+00 2.3E-01 586.3
DiD 1.0E+01 4.2E-01 524.3

zoledronate
DiB 7.5E-01 7.5E-01 551.3
DiA 1.5E+00 5.0E-01 575.3
DiC 2.5E+00 7.5E-01 479.3
DiD 2.5E+00 1.0E+00 513.4

alendronate
DiA 4.0E-01 4.0E-01 616.2
DiB 2.5E+00 6.3E-01 592.3
DiC 2.5E+00 1.3E+00 520.3
DiD 5.0E+00 7.5E-01 554.4

etidronate
DiA 2.0E+00 3.0E-01 509.1
DiB 8.5E+00 1.9E+00 485.3
DiC 1.8E+01 1.8E+00 413.3
DiD 5.0E+01 6.0E+00 447.4

clodronate
DiA 4.5E+00 2.5E-01 465.3
DiB 5.0E+00 ---b ---b

DiC 5.0E+01 2.5E+00 369.2
DiD 7.5E+01 2.0E+00 403.3  

 

a Limits of detection determined where the amount of analyte used results in S/N=3. 
b Indicates a SRM transition could not be monitored. 
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Figure 7.1. Structures of the tricationic ion-pairing reagents used in this study. Each reagent 
is labeled with an abbreviation used throughout the text. 
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Figure 7.2. Structures of the bisphosphonate compounds studied. 
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Figure 7.3. Tandem MS and proposed fragmentation of the neridronate-TriB complex. In 
proposed mechanism A, the first transition (m/z 826.6744.5) is a loss of 82 mass units 
which corresponds with H2PO3, which results in a complex between a +2 trication fragment 
and a -1 neridronate fragment. In proposed mechanism B, the m/z 744.5 complex is between 
an unfragmented trication and a -2 form of the neridronate fragment. The second transition 
for both mechanisms shown (MS3) is a loss of 195 mass units. The final fragment shown (m/z 
549.5) represents [TriB-2H]+. 
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Figure 7.4. Structures of the dicationic reagents used in this studied. They are labeled with 
the abbreviations used throughout the text. 
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Figure 7.5. An extracted ion chromatogram representing the LC separation of neridronate, 
etidronate, and clodronate using tricationic reagent TriB as a mobile phase ion-pair additive. 
This separation was performed on a C18 stationary phase with a mobile phase of 80:20 
Water:MeOH with 40μM TriB concentration. The flow rate was 0.3 mL min-1 and methanol 
was teed into the effluent at a flow rate of 0.2 mL min-1. The three trication-bisphosphonate 
complex masses were monitored simultaneously in SIM mode. 
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CHAPTER 8 
 

GENERAL CONCLUSIONS 
 

Chiral stationary phases based on cyclodextrins and macrocyclic glycopeptides 

proved to be very useful for the separation of enantiomeric pterocarpans. Enantioselectivity 

for all five compounds was found using b and gamma native cyclodextrin CSPs (Cyclobond I 

and II, respectively) in the reverse phase mode. The Cyclobond I 2000 RSP and Cyclobond I 

2000 AC columns were more effective, however, and between the two of them baseline 

separations for all compounds were achieved in the reverse phase mode. Of the macrocyclic 

glycopeptides CSPs, the Chirobiotic R column separated the most compounds in the reverse 

phase mode and had the best resolution and enantioselectivities (Rs=7.07, a=1.65, compound 

3) found in this study. In the normal phase mode of operation, the three benzofuran 

substituted pterocarpan complexes could be separated. The DMP derivatized B-cyclodextrin 

CSP was the only cyclodextrin based CSP to show enantioselectivity in the normal phase 

mode. Also in normal phase mode, these benzofuran substituted compounds were partially 

separated on the Chirobiotic R and Chirobiotic V CSPs. The nitro-substituted pterocarpan 

was baseline resolved on the Cyclobond I 2000 DMP, Chirobiotic T, and Chirobiotic TAG 

stationary phases. 

The macrocyclic glycopeptide stationary phase based on vancomycin successfully 

separated five EMAC complexes with varying ligands and metals with partial or baseline 

resolutions. Upon HPLC injection of EMAC complexes in the reverse phase mode, 

chromatographic peaks corresponding to the dipyridylamine ligand were observed. Due to 

the instability of the complexes in water, the polar organic mode or the normal phase mode 

of chromatography was utilized. In addition, mobile phase additives were determined to be 
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necessary for enantioseparations in the polar organic mode. These additives enhanced 

enantioselectivity but also improved resolution by increasing efficiency. Polarimetry 

experiments confirmed the enantiomeric separation of Ni3(dpa)4Cl2 and also determined that 

the nickel complex enantiomers have very high specific rotation values (on the order of 5000 

deg·cm/g·dm). The resolution of Ni3(dpa)4Cl2 enantiomers led to absolute configuration 

assignment using vibrational circular dichroism, electronic circular dichroism, optical 

rotatory dispersion, and density functional theory calculations. The first eluted enantiomer 

was assigned P-helical chirality. 

The second part of this dissertation demonstrated the application of tricationic ion-

pairing reagents for the detection of doubly charged anions using positive ion mode ESI-MS. 

A variety of newly synthesized linear tricationic ion-pairing agents were evaluated for 

structural elements important for the detection of divalent anions.  The optimum alkyl chain 

lengths coupling the cationic moieties should be between six and ten carbons in length.  

Tripropylphosphonium and benzylimidazolium charge moieties were found to provide lower 

LODs for the anions in the study.  In comparison to previously reported rigid tricationic ion-

pairing agents, the flexible linear trications evaluated generally showed more sensitivity than 

rigid (trigonal) tricationic reagents.  However successful the linear tricationic reagents may 

be, it was found that the trigonal trication with a benzene core and tripropylphosphonium 

charge groups is still very useful as it was often complimentary to the linear trications.  

Lastly, tandem mass spectrometry (SRM) was used to lower LODs. 

The application of the four optimal tricationic pairing reagents, two linear and two 

trigonal were used to determine the limits of detection for 34 divalent anions, such as 

dicarboxylates and disulfonates, and 5 monovalent anions. Taking into account the wide 
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array of analytes studied, the linear class and trigonal classes of tricationic reagents 

performed about equally as a whole. The two trications with tripropylphosphonium cationic 

moieties (linear and trigonal) outperformed trications with imidazolium based charge groups. 

When evaluating tricationic reagents, linear tricationic reagents provide lower limits of 

detection for most classes of compounds and should be tested first. The exception to this is 

the determination of disulfonates and halogenated dicarboxylates, where trigonal trications 

generally perform better. The use of tandem MS on the trication/di-anion complex helps to 

improve the sensitivity of detection for most of the dianions studied. Those complexes that 

dissociate into fragments not common to the trication showed the lowest limits of detection. 

Tricationic ion-pairing agents can also be used to determine monovalent anions by 

monitoring the +2 complexes. Therefore, mixtures of monovalent and divalent anions could 

be studied using a single tricationic reagent. Many of the LODs in this study are better or 

similar to those that have been previously reported, however this method is advantageous as 

it does not involve intricate sample preparation nor preconcentration and may be accessible 

to more laboratories. 

The same trigonal and linear tricationic ion-pairing reagents used in chapter 6 were 

evaluated in chapter 7 to determine the limits of detection of seven bisphosphonate drugs 

using both SIM and SRM modes. SRM mode lowered the LOD for all of the 

bisphosphonates. Evidence of -1 bisphosphonate species in positive mode ESI-MS led to the 

investigation of dicationic pairing reagents. The LODs for all of the bisphosphonates in SIM 

mode showed improvement with the use of dicationic reagents in comparison to tricationic 

reagents. Dicationic reagents can also be used in SRM mode and the LODs for the 

bisphosphonates were improved upon. SRM improvement was noted for two of the 
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dicationic reagents which had previously not shown detection sensitivity enhancement in 

MS-MS. An overall sensitivity improvement from 5-40 fold was observed between the best 

tricationic reagent in the SIM mode to the best dicationic reagent in SRM mode. One of the 

tricationic reagents was also used as an ion-pairing reagent in reversed phase 

chromatography experiments to increase retention and subsequently pair with the 

bisphosphonate for ESI-MS detection.  
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APPENDIX A 

 
APPENDIX ACCOMPANYING CHAPTER 4 
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Table A.1: Vibrational frequencies and vibrational descriptions for Ni3(dpa)4Cl2 

 
asee Figure 3 for band numbers 
bscaled by 0.9612 
cThe atom numbers for 1 are given in Figure S1. 
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Table A.2. Cartesian coordinates for optimized geometry of P- Ni3(dpa)4Cl2. 
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Table A.2. (continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Atoms                X                         Y                     Z 
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Table A.2. (continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Atoms                X                          Y                             Z 
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Table A.3: Vibrational frequencies (unscaled), infrared absorption intensities and rotational 
strengths obtained with B3LYP/LANL2DZ for P-Ni3(dpa)4Cl2 
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Figure A.3. (continued) 
 
 

 

Frequency 
(cm-1) 

IR intensities 
(Km/mol) 

Rotational Strengths 
10-44 esu2 cm2 
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Table A.4: Electronic transition wavelengths and rotational strengths for the first 50 
transitions of P-Ni3(dpa)4Cl2 obtained with BHLYP/LANL2DZ. 
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Table A.4. (continued) 
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Figure A.1. Structure of Ni3(dpa)4Cl2 showing atom numbering used in Table A.1. 
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Figure A.2. Chromatogram of the enantioseparation of Ni3(dpa)4Cl2. The complex was 
separated on the vancomycin-based chiral stationary phase (Chirobiotic V, Astec, Whippany, 
NJ) with a mobile phase containing 95/5 acetonitrile/methanol with 0.15% w/v ammonium 
trifluoroacetate and 0.05% w/v ammonium nitrate. The wavelength of detection was 270 nm. 
 
 
 
 
 
Full citation for Ref.9: 
Gaussian 03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. 
Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. 
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. 
Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, 
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, 
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, 
H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, 
C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, 
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, 
K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, 
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, 
O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, 
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, 
J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, 
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, 
C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, 
B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, 
Gaussian, Inc., Pittsburgh PA, 2003. 
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APPENDIX B 
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B.1 MATERIALS 
 
 Figure 1 gives the structures of all the linear tricationic ion-pairing reagents used in 

this study.  The reagents required for synthesis included sodium imidazole, 1,3-

dibromoproapne, 1,6-dibromohexane, 1,10-dibromodecane, 1,12-dibromododecane, 

methylimidazole, butylimidazole, benzylimidazole, and tripropylphosphine which were 

purchased from Sigma-Aldrich (Milwaukee, WI, USA).  All synthetic reagents were of 

reagent grade and were used without further purification.  The anions that were tested for 

LOD (listed in Table 1) were ordered as either the lithium, sodium, or potassium salt or as 

the disassociative free acid.  They were also obtained from Sigma-Aldrich and were used as 

the reagent grade without further purification.  HPLC grade water and methanol were 

purchased from Burdick and Jackson (Honeywell Burdick and Jackson, Morristown, NJ, 

USA).   

 
B.2 SYNTHESIS 

 
 Linear trications A1-4, B1-4, C1-4, and D1-4 were synthesized in an analogous 

manner, which included two steps.  The first step was to produce a 1,3-

(dialkylbromide)imidazolium bromide salt core.  In short, this was done by first slowly 

adding a solution of sodium imidazole (1 molar eq.) in anhydrous DMF with a syringe pump 

to the corresponding dibromoalkane (5 molar eq.) under a vigorous stream of nitrogen.  The 

reaction mixture was stirred for 12h at room temperature, then heated to 70°C and allowed to 

react for an additional 12h.  Next, DMF was removed by roto-evaporation and the excess 

dibromoalkane was extracted with hexane.  The resulting viscous liquid was purified by 

column chromatography (SiO2, methanol:dichloromethane (1:9)) to obtain the pure 1,3-
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(dialkylbromide)imidazolium bromide salt core in 65% yield.  The next step is to react a 

solution of the preceding (1 molar eq.) in anhydrous THF (100mL) with the corresponding 

imidazole or phosphine (2.5 molar eq.) under reflux for 24h.  Then the solvent was removed 

by roto-evaporation and the resulting tricationic bromide salt was dissolved in DI water (10-

20 mL) and washed with ethyl acetate (5 x 50 mL) to remove the excess imidazole or 

phosphine.  Lastly, water was removed by roto-evaporation and the product was dried under 

vacuum over phosphorous pentoxide resulting in the pure tricationic ionic liquid in 90% 

yield.  A full report of the synthesis of these unique tricationic ionic liquids, including the 

NMR, MS, and other physiochemical data will be reported in due course.  The bromide salt 

then had to be exchanged to the fluoride form for use as the ion-paring agent in ESI-MS.  We 

have previously reported the procedure for this anion exchange.37,39 

 
B.3 ESI-MS 

 
 The ESI-MS conditions used here were the same as those previously used and 

optimized for the detection of perchlorate with a dicationic reagent, and were as follows: 

spray voltage, 3kV; sheath gas flow, 37 arbitrary units (AU); auxiliary gas flow rate, 6 AU; 

capillary voltage, 11 V; capillary temperature, 350°C; tube lens voltage, 105 V.  When 

detecting the trication/dianion complex in the positive SIM mode, the SIM width was 5.  

When performing the SRM experiments, the isolation widths were between 1 and 5, the 

normalized collision energy was 30, and the activation time was 30 ms.  All data analysis 

was performed using the Xcalibur and Tune Plus software. 
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